Rack Rack 1.5.3 for Ruby

CPE Details

Rack Rack 1.5.3 for Ruby
1.5.3
2025-02-13
14h37 +00:00
2025-02-13
14h37 +00:00
Alerte pour un CPE
Stay informed of any changes for a specific CPE.
Notifications manage

CPE Name: cpe:2.3:a:rack:rack:1.5.3:*:*:*:*:ruby:*:*

Informations

Vendor

rack

Product

rack

Version

1.5.3

Target Software

ruby

Related CVE

Open and find in CVE List

CVE ID Published Description Score Severity
CVE-2025-61919 2025-10-10 19h22 +00:00 Rack is a modular Ruby web server interface. Prior to versions 2.2.20, 3.1.18, and 3.2.3, `Rack::Request#POST` reads the entire request body into memory for `Content-Type: application/x-www-form-urlencoded`, calling `rack.input.read(nil)` without enforcing a length or cap. Large request bodies can therefore be buffered completely into process memory before parsing, leading to denial of service (DoS) through memory exhaustion. Users should upgrade to Rack version 2.2.20, 3.1.18, or 3.2.3, anu of which enforces form parameter limits using `query_parser.bytesize_limit`, preventing unbounded reads of `application/x-www-form-urlencoded` bodies. Additionally, enforce strict maximum body size at the proxy or web server layer (e.g., Nginx `client_max_body_size`, Apache `LimitRequestBody`).
7.5
High
CVE-2025-61780 2025-10-10 16h53 +00:00 Rack is a modular Ruby web server interface. Prior to versions 2.2.20, 3.1.18, and 3.2.3, a possible information disclosure vulnerability existed in `Rack::Sendfile` when running behind a proxy that supports `x-sendfile` headers (such as Nginx). Specially crafted headers could cause `Rack::Sendfile` to miscommunicate with the proxy and trigger unintended internal requests, potentially bypassing proxy-level access restrictions. When `Rack::Sendfile` received untrusted `x-sendfile-type` or `x-accel-mapping` headers from a client, it would interpret them as proxy configuration directives. This could cause the middleware to send a "redirect" response to the proxy, prompting it to reissue a new internal request that was not subject to the proxy's access controls. An attacker could exploit this by setting a crafted `x-sendfile-type: x-accel-redirect` header, setting a crafted `x-accel-mapping` header, and requesting a path that qualifies for proxy-based acceleration. Attackers could bypass proxy-enforced restrictions and access internal endpoints intended to be protected (such as administrative pages). The vulnerability did not allow arbitrary file reads but could expose sensitive application routes. This issue only affected systems meeting all of the following conditions: The application used `Rack::Sendfile` with a proxy that supports `x-accel-redirect` (e.g., Nginx); the proxy did **not** always set or remove the `x-sendfile-type` and `x-accel-mapping` headers; and the application exposed an endpoint that returned a body responding to `.to_path`. Users should upgrade to Rack versions 2.2.20, 3.1.18, or 3.2.3, which require explicit configuration to enable `x-accel-redirect`. Alternatively, configure the proxy to always set or strip the header, or in Rails applications, disable sendfile completely.
5.8
Medium
CVE-2025-61772 2025-10-07 15h02 +00:00 Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, `Rack::Multipart::Parser` can accumulate unbounded data when a multipart part’s header block never terminates with the required blank line (`CRLFCRLF`). The parser keeps appending incoming bytes to memory without a size cap, allowing a remote attacker to exhaust memory and cause a denial of service (DoS). Attackers can send incomplete multipart headers to trigger high memory use, leading to process termination (OOM) or severe slowdown. The effect scales with request size limits and concurrency. All applications handling multipart uploads may be affected. Versions 2.2.19, 3.1.17, and 3.2.2 cap per-part header size (e.g., 64 KiB). As a workaround, restrict maximum request sizes at the proxy or web server layer (e.g., Nginx `client_max_body_size`).
7.5
High
CVE-2025-61771 2025-10-07 14h42 +00:00 Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, ``Rack::Multipart::Parser` stores non-file form fields (parts without a `filename`) entirely in memory as Ruby `String` objects. A single large text field in a multipart/form-data request (hundreds of megabytes or more) can consume equivalent process memory, potentially leading to out-of-memory (OOM) conditions and denial of service (DoS). Attackers can send large non-file fields to trigger excessive memory usage. Impact scales with request size and concurrency, potentially leading to worker crashes or severe garbage-collection overhead. All Rack applications processing multipart form submissions are affected. Versions 2.2.19, 3.1.17, and 3.2.2 enforce a reasonable size cap for non-file fields (e.g., 2 MiB). Workarounds include restricting maximum request body size at the web-server or proxy layer (e.g., Nginx `client_max_body_size`) and validating and rejecting unusually large form fields at the application level.
7.5
High
CVE-2025-61770 2025-10-07 14h30 +00:00 Rack is a modular Ruby web server interface. In versions prior to 2.2.19, 3.1.17, and 3.2.2, `Rack::Multipart::Parser` buffers the entire multipart preamble (bytes before the first boundary) in memory without any size limit. A client can send a large preamble followed by a valid boundary, causing significant memory use and potential process termination due to out-of-memory (OOM) conditions. Remote attackers can trigger large transient memory spikes by including a long preamble in multipart/form-data requests. The impact scales with allowed request sizes and concurrency, potentially causing worker crashes or severe slowdown due to garbage collection. Versions 2.2.19, 3.1.17, and 3.2.2 enforce a preamble size limit (e.g., 16 KiB) or discard preamble data entirely. Workarounds include limiting total request body size at the proxy or web server level and monitoring memory and set per-process limits to prevent OOM conditions.
7.5
High
CVE-2025-59830 2025-09-25 14h37 +00:00 Rack is a modular Ruby web server interface. Prior to version 2.2.18, Rack::QueryParser enforces its params_limit only for parameters separated by &, while still splitting on both & and ;. As a result, attackers could use ; separators to bypass the parameter count limit and submit more parameters than intended. Applications or middleware that directly invoke Rack::QueryParser with its default configuration (no explicit delimiter) could be exposed to increased CPU and memory consumption. This can be abused as a limited denial-of-service vector. This issue has been patched in version 2.2.18.
7.5
High
CVE-2025-46727 2025-05-07 23h07 +00:00 Rack is a modular Ruby web server interface. Prior to versions 2.2.14, 3.0.16, and 3.1.14, `Rack::QueryParser` parses query strings and `application/x-www-form-urlencoded` bodies into Ruby data structures without imposing any limit on the number of parameters, allowing attackers to send requests with extremely large numbers of parameters. The vulnerability arises because `Rack::QueryParser` iterates over each `&`-separated key-value pair and adds it to a Hash without enforcing an upper bound on the total number of parameters. This allows an attacker to send a single request containing hundreds of thousands (or more) of parameters, which consumes excessive memory and CPU during parsing. An attacker can trigger denial of service by sending specifically crafted HTTP requests, which can cause memory exhaustion or pin CPU resources, stalling or crashing the Rack server. This results in full service disruption until the affected worker is restarted. Versions 2.2.14, 3.0.16, and 3.1.14 fix the issue. Some other mitigations are available. One may use middleware to enforce a maximum query string size or parameter count, or employ a reverse proxy (such as Nginx) to limit request sizes and reject oversized query strings or bodies. Limiting request body sizes and query string lengths at the web server or CDN level is an effective mitigation.
7.5
High
CVE-2025-32441 2025-05-07 23h01 +00:00 Rack is a modular Ruby web server interface. Prior to version 2.2.14, when using the `Rack::Session::Pool` middleware, simultaneous rack requests can restore a deleted rack session, which allows the unauthenticated user to occupy that session. Rack session middleware prepares the session at the beginning of request, then saves is back to the store with possible changes applied by host rack application. This way the session becomes to be a subject of race conditions in general sense over concurrent rack requests. When using the `Rack::Session::Pool` middleware, and provided the attacker can acquire a session cookie (already a major issue), the session may be restored if the attacker can trigger a long running request (within that same session) adjacent to the user logging out, in order to retain illicit access even after a user has attempted to logout. Version 2.2.14 contains a patch for the issue. Some other mitigations are available. Either ensure the application invalidates sessions atomically by marking them as logged out e.g., using a `logged_out` flag, instead of deleting them, and check this flag on every request to prevent reuse; or implement a custom session store that tracks session invalidation timestamps and refuses to accept session data if the session was invalidated after the request began.
4.2
Medium
CVE-2024-26141 2024-02-28 23h28 +00:00 Rack is a modular Ruby web server interface. Carefully crafted Range headers can cause a server to respond with an unexpectedly large response. Responding with such large responses could lead to a denial of service issue. Vulnerable applications will use the `Rack::File` middleware or the `Rack::Utils.byte_ranges` methods (this includes Rails applications). The vulnerability is fixed in 3.0.9.1 and 2.2.8.1.
7.5
High
CVE-2024-25126 2024-02-28 23h28 +00:00 Rack is a modular Ruby web server interface. Carefully crafted content type headers can cause Rack’s media type parser to take much longer than expected, leading to a possible denial of service vulnerability (ReDos 2nd degree polynomial). This vulnerability is patched in 3.0.9.1 and 2.2.8.1.
7.5
High
CVE-2024-26146 2024-02-28 23h28 +00:00 Rack is a modular Ruby web server interface. Carefully crafted headers can cause header parsing in Rack to take longer than expected resulting in a possible denial of service issue. Accept and Forwarded headers are impacted. Ruby 3.2 has mitigations for this problem, so Rack applications using Ruby 3.2 or newer are unaffected. This vulnerability is fixed in 2.0.9.4, 2.1.4.4, 2.2.8.1, and 3.0.9.1.
7.5
High
CVE-2023-27530 2023-03-09 23h00 +00:00 A DoS vulnerability exists in Rack
7.5
High
CVE-2022-44570 2023-02-08 23h00 +00:00 A denial of service vulnerability in the Range header parsing component of Rack >= 1.5.0. A Carefully crafted input can cause the Range header parsing component in Rack to take an unexpected amount of time, possibly resulting in a denial of service attack vector. Any applications that deal with Range requests (such as streaming applications, or applications that serve files) may be impacted.
7.5
High
CVE-2022-44572 2023-02-08 23h00 +00:00 A denial of service vulnerability in the multipart parsing component of Rack fixed in 2.0.9.2, 2.1.4.2, 2.2.4.1 and 3.0.0.1 could allow an attacker tocraft input that can cause RFC2183 multipart boundary parsing in Rack to take an unexpected amount of time, possibly resulting in a denial of service attack vector. Any applications that parse multipart posts using Rack (virtually all Rails applications) are impacted.
7.5
High
CVE-2019-16782 2019-12-18 18h05 +00:00 There's a possible information leak / session hijack vulnerability in Rack (RubyGem rack). This vulnerability is patched in versions 1.6.12 and 2.0.8. Attackers may be able to find and hijack sessions by using timing attacks targeting the session id. Session ids are usually stored and indexed in a database that uses some kind of scheme for speeding up lookups of that session id. By carefully measuring the amount of time it takes to look up a session, an attacker may be able to find a valid session id and hijack the session. The session id itself may be generated randomly, but the way the session is indexed by the backing store does not use a secure comparison.
6.3
Medium