CPE, which stands for Common Platform Enumeration, is a standardized scheme for naming hardware, software, and operating systems. CPE provides a structured naming scheme to uniquely identify and classify information technology systems, platforms, and packages based on certain attributes such as vendor, product name, version, update, edition, and language.
CWE, or Common Weakness Enumeration, is a comprehensive list and categorization of software weaknesses and vulnerabilities. It serves as a common language for describing software security weaknesses in architecture, design, code, or implementation that can lead to vulnerabilities.
CAPEC, which stands for Common Attack Pattern Enumeration and Classification, is a comprehensive, publicly available resource that documents common patterns of attack employed by adversaries in cyber attacks. This knowledge base aims to understand and articulate common vulnerabilities and the methods attackers use to exploit them.
Services & Price
Help & Info
Search : CVE id, CWE id, CAPEC id, vendor or keywords in CVE
Adobe Flash Player before 13.0.0.281 and 14.x through 17.x before 17.0.0.169 on Windows and OS X and before 11.2.202.457 on Linux allows attackers to execute arbitrary code or cause a denial of service (memory corruption) via unspecified vectors, a different vulnerability than CVE-2015-0347, CVE-2015-0350, CVE-2015-0352, CVE-2015-0353, CVE-2015-0354, CVE-2015-0355, CVE-2015-0360, CVE-2015-3038, CVE-2015-3041, and CVE-2015-3043.
CVE Informations
Related Weaknesses
CWE-ID
Weakness Name
Source
CWE Other
No informations.
Metrics
Metrics
Score
Severity
CVSS Vector
Source
V2
10
AV:N/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
87.04%
–
–
2023-01-29
–
–
85.52%
–
–
2023-03-12
–
–
–
89.35%
–
2023-04-09
–
–
–
90.8%
–
2023-05-14
–
–
–
92.28%
–
2023-06-18
–
–
–
92.7%
–
2023-07-16
–
–
–
92.67%
–
2023-08-20
–
–
–
93.26%
–
2023-12-24
–
–
–
93.38%
–
2024-06-02
–
–
–
93.38%
–
2024-06-02
–
–
–
93.38%
–
2024-10-13
–
–
–
93.14%
–
2024-12-22
–
–
–
81.5%
–
2025-01-19
–
–
–
81.5%
–
2025-03-18
–
–
–
–
51.91%
2025-03-18
–
–
–
–
51.91,%
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Publication date : 2015-08-18 22h00 +00:00 Author : Google Security Research EDB Verified : Yes
Source: https://code.google.com/p/google-security-research/issues/detail?id=224&can=1&q=label%3AProduct-Flash%20modified-after%3A2015%2F8%2F17&sort=id
There’s an error in the PCRE engine version used in Flash that allows the execution of arbitrary PCRE bytecode, with potential for memory corruption and RCE.
This issue is a duplicate of http://bugs.exim.org/show_bug.cgi?id=1546 originally reported to PCRE upstream by mikispag; I rediscovered the issue fuzzing Flash so have filed this bug report to track disclosure deadline for Adobe.
The issue occurs in the handling of zero-length assertions; ie assertions where the object of the assertion is prepended with the OP_BRAZERO operator.
Simplest testcase that will crash in an ASAN build is the following:
(?(?<a>)?)
This is pretty much a nonsense expression, and I'm not sure why it compiles successfully; but it corresponds to the statement that 'assert that named group 'a' optionally matches'; which is tautologically true regardless of 'a'.
Regardless, we emit the following bytecode:
0000 5d0012 93 BRA [18]
0003 5f000c 95 COND [12]
0006 66 102 BRAZERO
0007 5e00050001 94 CBRA [5, 1]
000c 540005 84 KET [5]
000f 54000c 84 KET [12]
0012 540012 84 KET [18]
0015 00 0 END
When this is executed, we reach the following code:
/* The condition is an assertion. Call match() to evaluate it - setting
the final argument match_condassert causes it to stop at the end of an
assertion. */
else
{
RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL,
match_condassert, RM3);
if (rrc == MATCH_MATCH)
{
condition = TRUE;
ecode += 1 + LINK_SIZE + GET(ecode, LINK_SIZE + 2);
while (*ecode == OP_ALT) ecode += GET(ecode, 1); <---- ecode is out of bounds at this point.
If we look at the execution trace for this expression, we can see where this code goes wrong:
exec 0x600e0000dfe4 93 [0x60040000dfd0 41]
exec 0x600e0000dfe7 95 [0x60040000dfd0 41]
exec 0x600e0000dfea 102 [0x60040000dfd0 41] <--- RMATCH recursive match
exec 0x600e0000dfeb 94 [0x60040000dfd0 41]
exec 0x600e0000dff0 84 [0x60040000dfd0 41]
exec 0x600e0000dff3 84 [0x60040000dfd0 41]
exec 0x600e0000dff6 84 [0x60040000dfd0 41]
exec 0x600e0000dff9 0 [0x60040000dfd0 41] <--- recursive match returns
before 0x600e0000dfe7 24067 <--- ecode == 0x...dfe7
after 0x600e00013dea
If we look at the start base for our regex, it was based at dfe4; so dfe7 is the OP_COND, as expected. Looking at the next block of code, we're clearly expecting the assertion to be followed by a group; likely OP_CBRA or another opcode that has a 16-bit length field following the opcode byte.
ecode += 1 + LINK_SIZE + GET(ecode, LINK_SIZE + 2);
In this case, the insertion of the OP_BRAZERO has resulted in the expected OP_CBRA being shifted forward by a byte to 0x...dfeb; and this GET results in the value of 0x5e00 + 1 + LINK_SIZE being added to the ecode pointer, instead of the correct 0x0005 + 1 + LINK_SIZE, resulting in bytecode execution hopping outside of the allocated heap buffer.
See attached for a crash PoC for the latest Chrome/Flash on x64 linux.
https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/37839.zip
Products Mentioned
Configuraton 0
Adobe>>Flash_player >> Version To (including) 11.2.202.451