Weakness Name | Source | |
---|---|---|
Incorrect Parsing of Numbers with Different Radices The product parses numeric input assuming base 10 (decimal) values, but it does not account for inputs that use a different base number (radix). |
||
Incorrect Type Conversion or Cast The product does not correctly convert an object, resource, or structure from one type to a different type. |
Metrics | Score | Severity | CVSS Vector | Source |
---|---|---|---|---|
V3.1 | 3.1 | LOW |
CVSS:3.1/AV:A/AC:H/PR:N/UI:N/S:C/C:N/I:L/A:N/E:F/RL:W/RC:R
More informations
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. Adjacent The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. High successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. None The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. None The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. Changed An exploited vulnerability can affect resources beyond the security scope managed by the security authority of the vulnerable component. In this case, the vulnerable component and the impacted component are different and managed by different security authorities. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. None There is no loss of confidentiality within the impacted component. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Low Modification of data is possible, but the attacker does not have control over the consequence of a modification, or the amount of modification is limited. The data modification does not have a direct, serious impact on the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. None There is no impact to availability within the impacted component. Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Exploit Code Maturity This metric measures the likelihood of the vulnerability being attacked, and is typically based on the current state of exploit techniques, exploit code availability, or active, “in-the-wild” exploitation. Functional Functional exploit code is available. The code works in most situations where the vulnerability exists. Remediation Level The Remediation Level of a vulnerability is an important factor for prioritization. Workaround There is an unofficial, non-vendor solution available. In some cases, users of the affected technology will create a patch of their own or provide steps to work around or otherwise mitigate the vulnerability. Report Confidence This metric measures the degree of confidence in the existence of the vulnerability and the credibility of the known technical details. Reasonable Significant details are published, but researchers either do not have full confidence in the root cause, or do not have access to source code to fully confirm all of the interactions that may lead to the result. Reasonable confidence exists, however, that the bug is reproducible and at least one impact is able to be verified (proof-of-concept exploits may provide this). An example is a detailed write-up of research into a vulnerability with an explanation (possibly obfuscated or “left as an exercise to the reader”) that gives assurances on how to reproduce the results. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability. |
|
V3.1 | 3.4 | LOW |
CVSS:3.1/AV:A/AC:H/PR:N/UI:N/S:C/C:N/I:L/A:N
More informations
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. Adjacent The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. High successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. None The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. None The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. Changed An exploited vulnerability can affect resources beyond the security scope managed by the security authority of the vulnerable component. In this case, the vulnerable component and the impacted component are different and managed by different security authorities. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. None There is no loss of confidentiality within the impacted component. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Low Modification of data is possible, but the attacker does not have control over the consequence of a modification, or the amount of modification is limited. The data modification does not have a direct, serious impact on the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. None There is no impact to availability within the impacted component. Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability. |
psirt@fortinet.com |
V3.1 | 4.7 | MEDIUM |
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:C/C:N/I:L/A:N
More informations
Base: Exploitabilty MetricsThe Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component. Attack Vector This metric reflects the context by which vulnerability exploitation is possible. Adjacent The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g., local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an administrative network zone). Attack Complexity This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability. Low Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component. Privileges Required This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability. None The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack. User Interaction This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component. None The vulnerable system can be exploited without interaction from any user. Base: Scope MetricsThe Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope. Scope Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs. Changed An exploited vulnerability can affect resources beyond the security scope managed by the security authority of the vulnerable component. In this case, the vulnerable component and the impacted component are different and managed by different security authorities. Base: Impact MetricsThe Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve. Confidentiality Impact This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability. None There is no loss of confidentiality within the impacted component. Integrity Impact This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Low Modification of data is possible, but the attacker does not have control over the consequence of a modification, or the amount of modification is limited. The data modification does not have a direct, serious impact on the impacted component. Availability Impact This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability. None There is no impact to availability within the impacted component. Temporal MetricsThe Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability. Environmental MetricsThese metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability. |
nvd@nist.gov |
Fortinet>>Fortiproxy >> Version From (including) 7.0.0 To (including) 7.4.3
Fortinet>>Fortios >> Version From (including) 7.0.0 To (including) 7.0.15
Fortinet>>Fortios >> Version From (including) 7.2.0 To (including) 7.2.8
Fortinet>>Fortios >> Version From (including) 7.4.0 To (including) 7.4.3