CVE-2025-22152 : Detail

CVE-2025-22152

9.4
/
CRITICAL
Directory TraversalCode InjectionFile Inclusion
A01-Broken Access ControlA03-InjectionA04-Insecure Design
0.04%V3
Network
2025-01-10 15:23 +00:00
2025-01-10 16:08 +00:00

Alert for a CVE

Stay informed of any changes for a specific CVE.
Alert management

Descriptions

Improper Path Validation Enables Path Traversal in Multiple Components in Atheos

Atheos is a self-hosted browser-based cloud IDE. Prior to v600, the $path and $target parameters are not properly validated across multiple components, allowing an attacker to read, modify, or execute arbitrary files on the server. These vulnerabilities can be exploited through various attack vectors present in multiple PHP files. This vulnerability is fixed in v600.

Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
The product uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the product does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory.
CWE-94 Improper Control of Generation of Code ('Code Injection')
The product constructs all or part of a code segment using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the syntax or behavior of the intended code segment.
CWE-434 Unrestricted Upload of File with Dangerous Type
The product allows the upload or transfer of dangerous file types that are automatically processed within its environment.

Metrics

Metric Score Severity CVSS Vector Source
V4.0 9.4 CRITICAL CVSS:4.0/AV:N/AC:L/AT:N/PR:H/UI:N/VC:H/VI:H/VA:H/SC:H/SI:H/SA:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the “thing that is vulnerable”, which we refer to formally as the vulnerable system.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable system is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit.

Low

The attacker must take no measurable action to exploit the vulnerability. The attack requires no target-specific circumvention to exploit the vulnerability. An attacker can expect repeatable success against the vulnerable system.

Attack Requirements

This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack.

None

The successful attack does not depend on the deployment and execution conditions of the vulnerable system. The attacker can expect to be able to reach the vulnerability and execute the exploit under all or most instances of the vulnerability.

Privileges Required

This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability.

High

The attacker requires privileges that provide significant (e.g., administrative) control over the vulnerable system allowing full access to the vulnerable system’s settings and files.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system.

None

The vulnerable system can be exploited without interaction from any human user, other than the attacker. Examples include: a remote attacker is able to send packets to a target system a locally authenticated attacker executes code to elevate privileges

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information managed by the system due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all information within the Vulnerable System being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the Vulnerable System. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the Vulnerable System.

Availability Impact

This metric measures the impact to the availability of the impacted system resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the Vulnerable System; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the Vulnerable System (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Sub Confidentiality Impact

High

There is a total loss of confidentiality, resulting in all resources within the Subsequent System being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Sub Integrity Impact

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the Subsequent System. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the Subsequent System.

Sub Availability Impact

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the Subsequent System; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the Subsequent System (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Threat Metrics

The Threat metrics measure the current state of exploit techniques or code availability for a vulnerability.

Environmental Metrics

These metrics enable the consumer analyst to customize the resulting score depending on the importance of the affected IT asset to a user’s organization, measured in terms of complementary/alternative security controls in place, Confidentiality, Integrity, and Availability. The metrics are the modified equivalent of Base metrics and are assigned values based on the system placement within organizational infrastructure.

Supplemental Metrics

Supplemental metric group provides new metrics that describe and measure additional extrinsic attributes of a vulnerability. While the assessment of Supplemental metrics is provisioned by the provider, the usage and response plan of each metric within the Supplemental metric group is determined by the consumer.

V3.1 9.1 CRITICAL CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

High

The attacker requires privileges that provide significant (e.g., administrative) control over the vulnerable component allowing access to component-wide settings and files.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Changed

An exploited vulnerability can affect resources beyond the security scope managed by the security authority of the vulnerable component. In this case, the vulnerable component and the impacted component are different and managed by different security authorities.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

134c704f-9b21-4f2e-91b3-4a467353bcc0

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

References

Click on the button to the left (OFF), to authorize the inscription of cookie improving the functionalities of the site. Click on the button to the left (Accept all), to unauthorize the inscription of cookie improving the functionalities of the site.