CVE-2025-49741 : Détail

CVE-2025-49741

7.5
/
Haute
Improper Privilege Management
A01-Broken Access Control
1.87%V4
Network
2025-07-01
22h22 +00:00
2025-08-23
00h40 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Microsoft Edge (Chromium-based) Information Disclosure Vulnerability

No cwe for this issue in Microsoft Edge (Chromium-based) allows an unauthorized attacker to disclose information over a network.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-268 Privilege Chaining
Two distinct privileges, roles, capabilities, or rights can be combined in a way that allows an entity to perform unsafe actions that would not be allowed without that combination.
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.1 7.4 HIGH CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:N/A:N/E:U/RL:O/RC:C

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

Required

Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Changed

An exploited vulnerability can affect resources beyond the security scope managed by the security authority of the vulnerable component. In this case, the vulnerable component and the impacted component are different and managed by different security authorities.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Exploit Code Maturity

This metric measures the likelihood of the vulnerability being attacked, and is typically based on the current state of exploit techniques, exploit code availability, or active, “in-the-wild” exploitation.

Unproven

No exploit code is available, or an exploit is theoretical.

Remediation Level

The Remediation Level of a vulnerability is an important factor for prioritization.

Official fix

A complete vendor solution is available. Either the vendor has issued an official patch, or an upgrade is available.

Report Confidence

This metric measures the degree of confidence in the existence of the vulnerability and the credibility of the known technical details.

Confirmed

Detailed reports exist, or functional reproduction is possible (functional exploits may provide this). Source code is available to independently verify the assertions of the research, or the author or vendor of the affected code has confirmed the presence of the vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

V3.1 7.4 HIGH CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:N/A:N

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

Required

Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Changed

An exploited vulnerability can affect resources beyond the security scope managed by the security authority of the vulnerable component. In this case, the vulnerable component and the impacted component are different and managed by different security authorities.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

secure@microsoft.com
V3.1 7.5 HIGH CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

Low

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

None

There is no loss of integrity within the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

None

There is no impact to availability within the impacted component.

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

nvd@nist.gov

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 52389

Date de publication : 2025-08-02 22h00 +00:00
Auteur : nu11secur1ty
EDB Vérifié : No

# Titles: Microsoft Edge (Chromium-based) 135.0.7049.114/.115 - Information Disclosure # Date: 08/02/2025 # Vendor: Microsoft # Software: https://www.microsoft.com/bg-bg/edge/download?form=MA13FJ # Reference: https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-49741 ## Description # CVE-2025-49741 Exploit Server **Author:** nu11secur1ty (2025) ## Overview This Python script simulates an exploit targeting a Microsoft Edge (Chromium-based) information disclosure vulnerability identified as **CVE-2025-49741**. It runs two HTTP servers concurrently: - **Malicious Server (port 8080):** Serves a crafted page that collects victim headers and simulates an internal request to the exfiltration endpoint. - **Exfiltration Endpoint (port 1337):** Receives simulated internal requests and logs headers for demonstration purposes. ## Components ### MaliciousRequestHandler - Handles HTTP GET requests on port 8080. - Logs the victim's IP address, User-Agent, and all request headers. - Sends a crafted HTTP GET request to the exfiltration server on port 1337 with spoofed headers to simulate internal communication. - Responds with an HTML page indicating that the victim's information is being sent. ### ExfilEndpoint - Handles HTTP GET requests on port 1337. - Logs all headers received, simulating data exfiltration. - Responds with a success message. ## Features - Automatically detects the local IP address to bind the servers. - Graceful shutdown on Ctrl+C (SIGINT), ensuring both servers close cleanly. - Uses `ThreadingTCPServer` for responsive handling of multiple connections. - Clear console logging for monitoring victim connections and exfiltration simulation. ## Requirements - Python 3.6+ - `requests` library (`pip install requests`) ## Usage 1. Run the script: ```bash python CVE-2025-49741.py ``` 2. The script will print the URLs where both servers are running (e.g., `http://192.168.x.x:8080` and `http://192.168.x.x:1337`). 3. Press Ctrl+C to stop both servers gracefully. ## Notes - This tool is for educational and research purposes only. - Do NOT use against systems you do not own or have explicit permission to test. - The exploit logic is simulated and does NOT perform real exploitation but mimics the vulnerability for demonstration. ## Disclaimer Use responsibly. The author is not responsible for any misuse of this software. --- **nu11secur1ty 2025** # Video: [href](https://www.youtube.com/watch?v=cWClT0Hvqac) # Source: [href]( https://github.com/nu11secur1ty/CVE-mitre/tree/main/2025/CVE-2025-49741) # Buy me a coffee if you are not ashamed: [href](https://www.paypal.com/donate/?hosted_button_id=ZPQZT5XMC5RFY) # Source download [href]( https://nu11secur1ty.github.io/DownGit/#/home?url=https://github.com/nu11secur1ty/CVE-mitre/tree/main/2025/CVE-2025-49741 ) # Time spent: 01:35:00 -- System Administrator - Infrastructure Engineer Penetration Testing Engineer Exploit developer at https://packetstormsecurity.com/ https://cve.mitre.org/index.html https://cxsecurity.com/ and https://www.exploit-db.com/ 0day Exploit DataBase https://0day.today/ home page: https://www.nu11secur1ty.com/ hiPEnIMR0v7QCo/+SEH9gBclAAYWGnPoBIQ75sCj60E= nu11secur1ty <http://nu11secur1ty.com/> -- System Administrator - Infrastructure Engineer Penetration Testing Engineer Exploit developer at https://packetstorm.news/ https://cve.mitre.org/index.html https://cxsecurity.com/ and https://www.exploit-db.com/ 0day Exploit DataBase https://0day.today/ home page: https://www.nu11secur1ty.com/ hiPEnIMR0v7QCo/+SEH9gBclAAYWGnPoBIQ75sCj60E= nu11secur1ty <http://nu11secur1ty.com/>

Products Mentioned

Configuraton 0

Microsoft>>Edge_chromium >> Version To (excluding) 135.0.3179.98

Références