CVE-2025-52464 : Detail

CVE-2025-52464

9.5
/
Critical
A02-Cryptographic Failures
0.06%V4
Network
2025-06-19
15h10 +00:00
2025-06-23
17h39 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

Meshtastic Repeated Public and Private Keypairs

Meshtastic is an open source mesh networking solution. In versions from 2.5.0 to before 2.6.11, the flashing procedure of several hardware vendors was resulting in duplicated public/private keys. Additionally, the Meshtastic was failing to properly initialize the internal randomness pool on some platforms, leading to possible low-entropy key generation. When users with an affected key pair sent Direct Messages, those message could be captured and decrypted by an attacker that has compiled the list of compromised keys. This issue has been patched in version 2.6.11 where key generation is delayed til the first time the LoRa region is set, along with warning users when a compromised key is detected. Version 2.6.12 furthers this patch by automatically wiping known compromised keys when found. A workaround to this vulnerability involves users doing a complete device wipe to remove vendor-cloned keys.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-331 Insufficient Entropy
The product uses an algorithm or scheme that produces insufficient entropy, leaving patterns or clusters of values that are more likely to occur than others.

Metrics

Metrics Score Severity CVSS Vector Source
V4.0 9.5 CRITICAL CVSS:4.0/AV:N/AC:L/AT:P/PR:N/UI:N/VC:H/VI:H/VA:L/SC:L/SI:L/SA:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the “thing that is vulnerable”, which we refer to formally as the vulnerable system.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable system is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit.

Low

The attacker must take no measurable action to exploit the vulnerability. The attack requires no target-specific circumvention to exploit the vulnerability. An attacker can expect repeatable success against the vulnerable system.

Attack Requirements

This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack.

Present

The successful attack depends on the presence of specific deployment and execution conditions of the vulnerable system that enable the attack. These include: A race condition must be won to successfully exploit the vulnerability. The successfulness of the attack is conditioned on execution conditions that are not under full control of the attacker. The attack may need to be launched multiple times against a single target before being successful. Network injection. The attacker must inject themselves into the logical network path between the target and the resource requested by the victim (e.g. vulnerabilities requiring an on-path attacker).

Privileges Required

This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability.

None

The attacker is unauthenticated prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system.

None

The vulnerable system can be exploited without interaction from any human user, other than the attacker. Examples include: a remote attacker is able to send packets to a target system a locally authenticated attacker executes code to elevate privileges

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information managed by the system due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all information within the Vulnerable System being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the Vulnerable System. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the Vulnerable System.

Availability Impact

This metric measures the impact to the availability of the impacted system resulting from a successfully exploited vulnerability.

Low

Performance is reduced or there are interruptions in resource availability. Even if repeated exploitation of the vulnerability is possible, the attacker does not have the ability to completely deny service to legitimate users. The resources in the Vulnerable System are either partially available all of the time, or fully available only some of the time, but overall there is no direct, serious consequence to the Vulnerable System.

Sub Confidentiality Impact

Low

There is some loss of confidentiality. Access to some restricted information is obtained, but the attacker does not have control over what information is obtained, or the amount or kind of loss is limited. The information disclosure does not cause a direct, serious loss to the Subsequent System.

Sub Integrity Impact

Low

Modification of data is possible, but the attacker does not have control over the consequence of a modification, or the amount of modification is limited. The data modification does not have a direct, serious impact to the Subsequent System.

Sub Availability Impact

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the Subsequent System; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the Subsequent System (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Threat Metrics

The Threat metrics measure the current state of exploit techniques or code availability for a vulnerability.

Environmental Metrics

These metrics enable the consumer analyst to customize the resulting score depending on the importance of the affected IT asset to a user’s organization, measured in terms of complementary/alternative security controls in place, Confidentiality, Integrity, and Availability. The metrics are the modified equivalent of Base metrics and are assigned values based on the system placement within organizational infrastructure.

Supplemental Metrics

Supplemental metric group provides new metrics that describe and measure additional extrinsic attributes of a vulnerability. While the assessment of Supplemental metrics is provisioned by the provider, the usage and response plan of each metric within the Supplemental metric group is determined by the consumer.

EPSS

EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.

EPSS Score

The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.

EPSS Percentile

The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.

References