CWE-246 Detail

CWE-246

J2EE Bad Practices: Direct Use of Sockets
Draft
2006-07-19
00h00 +00:00
2024-02-29
00h00 +00:00
Notifications for a CWE
Stay informed of any changes for a specific CWE.
Notifications manage

Name: J2EE Bad Practices: Direct Use of Sockets

The J2EE application directly uses sockets instead of using framework method calls.

CWE Description

The J2EE standard permits the use of sockets only for the purpose of communication with legacy systems when no higher-level protocol is available. Authoring your own communication protocol requires wrestling with difficult security issues.

Without significant scrutiny by a security expert, chances are good that a custom communication protocol will suffer from security problems. Many of the same issues apply to a custom implementation of a standard protocol. While there are usually more resources available that address security concerns related to implementing a standard protocol, these resources are also available to attackers.

General Informations

Modes Of Introduction

Implementation

Applicable Platforms

Language

Name: Java (Undetermined)

Common Consequences

Scope Impact Likelihood
OtherQuality Degradation

Potential Mitigations

Phases : Architecture and Design
Use framework method calls instead of using sockets directly.

Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)
Effectiveness : High

Vulnerability Mapping Notes

Justification : This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comment : Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

References

REF-6

Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors
Katrina Tsipenyuk, Brian Chess, Gary McGraw.
https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf

Submission

Name Organization Date Date release Version
7 Pernicious Kingdoms 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Name Organization Date Comment
Sean Eidemiller Cigital 2008-07-01 +00:00 added/updated demonstrative examples
Eric Dalci Cigital 2008-07-01 +00:00 updated Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Relationships, Other_Notes, Taxonomy_Mappings, Weakness_Ordinalities
CWE Content Team MITRE 2011-06-01 +00:00 updated Common_Consequences
CWE Content Team MITRE 2011-06-27 +00:00 updated Common_Consequences
CWE Content Team MITRE 2012-05-11 +00:00 updated Relationships
CWE Content Team MITRE 2012-10-30 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2014-06-23 +00:00 updated Description, Other_Notes
CWE Content Team MITRE 2014-07-30 +00:00 updated Demonstrative_Examples, Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2017-11-08 +00:00 updated Causal_Nature, Relationships
CWE Content Team MITRE 2020-02-24 +00:00 updated References, Relationships
CWE Content Team MITRE 2023-04-27 +00:00 updated Detection_Factors, Relationships, Time_of_Introduction
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes
CWE Content Team MITRE 2024-02-29 +00:00 updated Demonstrative_Examples