CVE-2025-54473 : Détail

CVE-2025-54473

9.2
/
Critique
File Inclusion
A04-Insecure Design
Network
2025-08-15
11h54 +00:00
2025-08-15
12h57 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Extension - phoca.cz - Authenticated RCE vulnerability in Phoca Commander component 1.0.0-4.0.0 and 5.0.0-5.0.1 for Joomla

An authenticated RCE vulnerability in Phoca Commander component 1.0.0-4.0.0 and 5.0.0-5.0.1 for Joomla was discovered. The issue allows code execution via the unzip feature.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-434 Unrestricted Upload of File with Dangerous Type
The product allows the upload or transfer of dangerous file types that are automatically processed within its environment.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V4.0 9.2 CRITICAL CVSS:4.0/AV:N/AC:L/AT:N/PR:H/UI:N/VC:H/VI:H/VA:H/SC:H/SI:N/SA:N/S:N/AU:N/RE:L/U:Clear

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the “thing that is vulnerable”, which we refer to formally as the vulnerable system.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable system is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit.

Low

The attacker must take no measurable action to exploit the vulnerability. The attack requires no target-specific circumvention to exploit the vulnerability. An attacker can expect repeatable success against the vulnerable system.

Attack Requirements

This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack.

None

The successful attack does not depend on the deployment and execution conditions of the vulnerable system. The attacker can expect to be able to reach the vulnerability and execute the exploit under all or most instances of the vulnerability.

Privileges Required

This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability.

High

The attacker requires privileges that provide significant (e.g., administrative) control over the vulnerable system allowing full access to the vulnerable system’s settings and files.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system.

None

The vulnerable system can be exploited without interaction from any human user, other than the attacker. Examples include: a remote attacker is able to send packets to a target system a locally authenticated attacker executes code to elevate privileges

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information managed by the system due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all information within the Vulnerable System being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the Vulnerable System. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the Vulnerable System.

Availability Impact

This metric measures the impact to the availability of the impacted system resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the Vulnerable System; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the Vulnerable System (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Sub Confidentiality Impact

High

There is a total loss of confidentiality, resulting in all resources within the Subsequent System being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Sub Integrity Impact

None

There is no loss of integrity within the Subsequent System or all integrity impact is constrained to the Vulnerable System.

Sub Availability Impact

None

There is no impact to availability within the Subsequent System or all availability impact is constrained to the Vulnerable System.

Threat Metrics

The Threat metrics measure the current state of exploit techniques or code availability for a vulnerability.

Environmental Metrics

These metrics enable the consumer analyst to customize the resulting score depending on the importance of the affected IT asset to a user’s organization, measured in terms of complementary/alternative security controls in place, Confidentiality, Integrity, and Availability. The metrics are the modified equivalent of Base metrics and are assigned values based on the system placement within organizational infrastructure.

Supplemental Metrics

Supplemental metric group provides new metrics that describe and measure additional extrinsic attributes of a vulnerability. While the assessment of Supplemental metrics is provisioned by the provider, the usage and response plan of each metric within the Supplemental metric group is determined by the consumer.

Automatable

The “Automatable” metric captures the answer to the question ”Can an attacker automate exploitation events for this vulnerability across multiple targets?” based on steps 1-4 of the kill chain2 [Hutchins et al., 2011]. These steps are reconnaissance, weaponization, delivery, and exploitation. If evaluated, the metric can take the values no or yes.

No

Attackers cannot reliably automate all 4 steps of the kill chain for this vulnerability for some reason. These steps are reconnaissance, weaponization, delivery, and exploitation.

Safety

Like all Supplemental Metrics, providing a value for Safety is completely optional. Suppliers and vendors (AKA: scoring providers) may or may not provide Safety as a Supplemental Metric as they see fit.

Negligible

Consequences of the vulnerability meet definition of IEC 61508 consequence category 'negligible'.

Vulnerability Response Effort

The intention of the Vulnerability Response Effort metric is to provide supplemental information on how difficult it is for consumers to provide an initial response to the impact of vulnerabilities for deployed products and services in their infrastructure.

Low

The effort required to respond to a vulnerability is low/trivial. Examples include: communication on better documentation, configuration workarounds, or guidance from the vendor that does not require an immediate update, upgrade, or replacement by the consuming entity, such as firewall filter configuration.

Provider Urgency

Many vendors currently provide supplemental severity ratings to consumers via product security advisories.

Clear

Provider has assessed the impact of this vulnerability as having no urgency (Informational).

Références

https://phoca.cz/
Tags : product