CVE-2025-22166 : Detail

CVE-2025-22166

8.3
/
High
Network
2025-10-21
16h00 +00:00
2025-10-21
16h21 +00:00
Notifications for a CVE
Stay informed of any changes for a specific CVE.
Notifications manage

CVE Descriptions

This High severity DoS (Denial of Service) vulnerability was introduced in version 2.0 of Confluence Data Center. This DoS (Denial of Service) vulnerability, with a CVSS Score of 8.3, allows an attacker to cause a resource to be unavailable for its intended users by temporarily or indefinitely disrupting services of a host connected to a network. Atlassian recommends that Confluence Data Center customers upgrade to latest version, if you are unable to do so, upgrade your instance to one of the specified supported fixed versions: Confluence Data Center and Server 8.5: Upgrade to a release greater than or equal to 8.5.25 Confluence Data Center and Server 9.2: Upgrade to a release greater than or equal to 9.2.7 Confluence Data Center and Server 10.0: Upgrade to a release greater than or equal to 10.0.2 See the release notes ([https://confluence.atlassian.com/doc/confluence-release-notes-327.html]). You can download the latest version of Confluence Data Center from the download center ([https://www.atlassian.com/software/confluence/download-archives]). This vulnerability was reported via our Atlassian (Internal) program.

CVE Informations

Related Weaknesses

CWE-ID Weakness Name Source
CWE-405 Asymmetric Resource Consumption (Amplification)
The product does not properly control situations in which an adversary can cause the product to consume or produce excessive resources without requiring the adversary to invest equivalent work or otherwise prove authorization, i.e., the adversary's influence is "asymmetric."

Metrics

Metrics Score Severity CVSS Vector Source
V4.0 8.3 HIGH CVSS:4.0/AV:N/AC:L/AT:N/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:H

Base: Exploitabilty Metrics

The Exploitability metrics reflect the characteristics of the “thing that is vulnerable”, which we refer to formally as the vulnerable system.

Attack Vector

This metric reflects the context by which vulnerability exploitation is possible.

Network

The vulnerable system is bound to the network stack and the set of possible attackers extends beyond the other options listed below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers).

Attack Complexity

This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit.

Low

The attacker must take no measurable action to exploit the vulnerability. The attack requires no target-specific circumvention to exploit the vulnerability. An attacker can expect repeatable success against the vulnerable system.

Attack Requirements

This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack.

None

The successful attack does not depend on the deployment and execution conditions of the vulnerable system. The attacker can expect to be able to reach the vulnerability and execute the exploit under all or most instances of the vulnerability.

Privileges Required

This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability.

Low

The attacker requires privileges that provide basic capabilities that are typically limited to settings and resources owned by a single low-privileged user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

User Interaction

This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system.

None

The vulnerable system can be exploited without interaction from any human user, other than the attacker. Examples include: a remote attacker is able to send packets to a target system a locally authenticated attacker executes code to elevate privileges

Base: Impact Metrics

The Impact metrics capture the effects of a successfully exploited vulnerability. Analysts should constrain impacts to a reasonable, final outcome which they are confident an attacker is able to achieve.

Confidentiality Impact

This metric measures the impact to the confidentiality of the information managed by the system due to a successfully exploited vulnerability.

None

There is no loss of confidentiality within the Vulnerable System.

Integrity Impact

This metric measures the impact to integrity of a successfully exploited vulnerability.

None

There is no loss of integrity within the Vulnerable System.

Availability Impact

This metric measures the impact to the availability of the impacted system resulting from a successfully exploited vulnerability.

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the Vulnerable System; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the Vulnerable System (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Sub Confidentiality Impact

Negligible

There is no loss of confidentiality within the Subsequent System or all confidentiality impact is constrained to the Vulnerable System.

Sub Integrity Impact

None

There is no loss of integrity within the Subsequent System or all integrity impact is constrained to the Vulnerable System.

Sub Availability Impact

High

There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the Subsequent System; this loss is either sustained (while the attacker continues to deliver the attack) or persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the ability to deny some availability, but the loss of availability presents a direct, serious consequence to the Subsequent System (e.g., the attacker cannot disrupt existing connections, but can prevent new connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack, leaks a only small amount of memory, but after repeated exploitation causes a service to become completely unavailable).

Threat Metrics

The Threat metrics measure the current state of exploit techniques or code availability for a vulnerability.

Environmental Metrics

These metrics enable the consumer analyst to customize the resulting score depending on the importance of the affected IT asset to a user’s organization, measured in terms of complementary/alternative security controls in place, Confidentiality, Integrity, and Availability. The metrics are the modified equivalent of Base metrics and are assigned values based on the system placement within organizational infrastructure.

Supplemental Metrics

Supplemental metric group provides new metrics that describe and measure additional extrinsic attributes of a vulnerability. While the assessment of Supplemental metrics is provisioned by the provider, the usage and response plan of each metric within the Supplemental metric group is determined by the consumer.

References