Détail du CWE-336

CWE-336

Same Seed in Pseudo-Random Number Generator (PRNG)
Draft
2006-07-19
00h00 +00:00
2023-10-26
00h00 +00:00
Notifications pour un CWE
Restez informé de toutes modifications pour un CWE spécifique.
Gestion des notifications

Nom: Same Seed in Pseudo-Random Number Generator (PRNG)

A Pseudo-Random Number Generator (PRNG) uses the same seed each time the product is initialized.

Description du CWE

Given the deterministic nature of PRNGs, using the same seed for each initialization will lead to the same output in the same order. If an attacker can guess (or knows) the seed, then the attacker may be able to determine the random numbers that will be produced from the PRNG.

Informations générales

Modes d'introduction

Implementation : REALIZATION: This weakness is caused during implementation of an architectural security tactic.

Plateformes applicables

Langue

Class: Not Language-Specific (Undetermined)

Conséquences courantes

Portée Impact Probabilité
Other
Access Control
Other, Bypass Protection Mechanism

Exemples observés

Références Description

CVE-2022-39218

SDK for JavaScript app builder for serverless code uses the same fixed seed for a PRNG, allowing cryptography bypass

Mesures d’atténuation potentielles

Phases : Architecture and Design
Do not reuse PRNG seeds. Consider a PRNG that periodically re-seeds itself as needed from a high quality pseudo-random output, such as hardware devices.
Phases : Architecture and Design // Requirements
Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy problems, or use the more recent FIPS 140-3 [REF-1192] if possible.

Méthodes de détection

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)
Efficacité : High

Notes de cartographie des vulnérabilités

Justification : This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Commentaire : Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

NotesNotes

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely. Within the developer and other communities, "randomness" is used heavily. However, within cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-used definitions, even within standards documents and cryptography papers. Future versions of CWE will attempt to define these terms and, if necessary, distinguish between them in ways that are appropriate for different communities but do not reduce the usability of CWE for mapping, understanding, or other scenarios.

Références

REF-267

SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES
Information Technology Laboratory, National Institute of Standards and Technology.
https://csrc.nist.gov/csrc/media/publications/fips/140/2/final/documents/fips1402.pdf

REF-1192

FIPS PUB 140-3: SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES
Information Technology Laboratory, National Institute of Standards and Technology.
https://csrc.nist.gov/publications/detail/fips/140/3/final

Soumission

Nom Organisation Date Date de publication Version
PLOVER 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Nom Organisation Date Commentaire
Sean Eidemiller Cigital 2008-07-01 +00:00 added/updated demonstrative examples
Eric Dalci Cigital 2008-07-01 +00:00 updated Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2009-03-10 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2009-12-28 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2010-06-21 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2011-06-01 +00:00 updated Common_Consequences, Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2011-09-13 +00:00 updated Potential_Mitigations, References
CWE Content Team MITRE 2012-05-11 +00:00 updated Relationships
CWE Content Team MITRE 2014-07-30 +00:00 updated Demonstrative_Examples
CWE Content Team MITRE 2017-11-08 +00:00 updated Applicable_Platforms, Description, Modes_of_Introduction, Name, References, Relationships
CWE Content Team MITRE 2019-01-03 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2019-06-20 +00:00 updated Type
CWE Content Team MITRE 2020-02-24 +00:00 updated Relationships
CWE Content Team MITRE 2021-07-20 +00:00 updated Demonstrative_Examples, Description, Maintenance_Notes, Modes_of_Introduction, Potential_Mitigations, References
CWE Content Team MITRE 2021-10-28 +00:00 updated Relationships
CWE Content Team MITRE 2023-04-27 +00:00 updated Detection_Factors, Modes_of_Introduction, References, Relationships, Time_of_Introduction
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes, Relationships
CWE Content Team MITRE 2023-10-26 +00:00 updated Demonstrative_Examples, Observed_Examples