Détail du CWE-39

CWE-39

Path Traversal: 'C:dirname'
Draft
2006-07-19
00h00 +00:00
2023-06-29
00h00 +00:00
Notifications pour un CWE
Restez informé de toutes modifications pour un CWE spécifique.
Gestion des notifications

Nom: Path Traversal: 'C:dirname'

The product accepts input that contains a drive letter or Windows volume letter ('C:dirname') that potentially redirects access to an unintended location or arbitrary file.

Informations générales

Modes d'introduction

Implementation

Plateformes applicables

Langue

Class: Not Language-Specific (Undetermined)

Conséquences courantes

Portée Impact Probabilité
Integrity
Confidentiality
Availability
Execute Unauthorized Code or Commands

Note: The attacker may be able to create or overwrite critical files that are used to execute code, such as programs or libraries.
IntegrityModify Files or Directories

Note: The attacker may be able to overwrite or create critical files, such as programs, libraries, or important data. If the targeted file is used for a security mechanism, then the attacker may be able to bypass that mechanism. For example, appending a new account at the end of a password file may allow an attacker to bypass authentication.
ConfidentialityRead Files or Directories

Note: The attacker may be able read the contents of unexpected files and expose sensitive data. If the targeted file is used for a security mechanism, then the attacker may be able to bypass that mechanism. For example, by reading a password file, the attacker could conduct brute force password guessing attacks in order to break into an account on the system.
AvailabilityDoS: Crash, Exit, or Restart

Note: The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as programs, libraries, or important data. This may prevent the software from working at all and in the case of a protection mechanisms such as authentication, it has the potential to lockout every user of the software.

Exemples observés

Références Description

CVE-2001-0038

Remote attackers can read arbitrary files by specifying the drive letter in the requested URL.

CVE-2001-0255

FTP server allows remote attackers to list arbitrary directories by using the "ls" command and including the drive letter name (e.g. C:) in the requested pathname.

CVE-2001-0687

FTP server allows a remote attacker to retrieve privileged system information by specifying arbitrary paths.

CVE-2001-0933

FTP server allows remote attackers to list the contents of arbitrary drives via a ls command that includes the drive letter as an argument.

CVE-2002-0466

Server allows remote attackers to browse arbitrary directories via a full pathname in the arguments to certain dynamic pages.

CVE-2002-1483

Remote attackers can read arbitrary files via an HTTP request whose argument is a filename of the form "C:" (Drive letter), "//absolute/path", or ".." .

CVE-2004-2488

FTP server read/access arbitrary files using "C:\" filenames

Mesures d’atténuation potentielles

Phases : Implementation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

When validating filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help to avoid CWE-434.

Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a directory separator. Another possible error could occur when the filtering is applied in a way that still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../...//" string in a sequential fashion, two instances of "../" would be removed from the original string, but the remaining characters would still form the "../" string.


Phases : Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180). Make sure that the application does not decode the same input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by introducing dangerous inputs after they have been checked.

Notes de cartographie des vulnérabilités

Justification : This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Commentaire : Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.

Soumission

Nom Organisation Date Date de publication Version
PLOVER 2006-07-19 +00:00 2006-07-19 +00:00 Draft 3

Modifications

Nom Organisation Date Commentaire
Eric Dalci Cigital 2008-07-01 +00:00 updated Potential_Mitigations, Time_of_Introduction
CWE Content Team MITRE 2008-09-08 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2008-11-24 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2009-07-27 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2010-06-21 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2011-03-29 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2011-06-01 +00:00 updated Common_Consequences
CWE Content Team MITRE 2011-09-13 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2012-05-11 +00:00 updated Common_Consequences, Observed_Examples, Relationships
CWE Content Team MITRE 2014-07-30 +00:00 updated Relationships, Taxonomy_Mappings
CWE Content Team MITRE 2017-11-08 +00:00 updated Applicable_Platforms, Taxonomy_Mappings
CWE Content Team MITRE 2020-02-24 +00:00 updated Potential_Mitigations, Relationships
CWE Content Team MITRE 2020-06-25 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2021-03-15 +00:00 updated Potential_Mitigations
CWE Content Team MITRE 2023-01-31 +00:00 updated Description
CWE Content Team MITRE 2023-04-27 +00:00 updated Relationships
CWE Content Team MITRE 2023-06-29 +00:00 updated Mapping_Notes